В свободное время я люблю читать книги. Особенно мне нравится фантастика. И вот почему.В таких книгах много интересного, необычного. Можно перемещаться во времени, летать, колдовать или перелетать с планеты на планету на больших космических кораблях.Эти книги учат различать добро и зло. Когда читаешь такую книгу, становится ясно, что хорошо, а что нет, что предавать друзей нельзя, что добро должно победить зло.Фантастические книги учат быть мужественными, не прятаться от опасностей. Когда я не могу решить, как поступить, я представляю на своем месте какого-нибудь положительного героя из книги и спрашиваю себя о том, как бы поступил бы этот герой, будь он на моем месте. Тогда решение приходит легко. Фантастические книги – это хорошие друзья.Вот почему я люблю читать фантастику.
Sadovskaya425
27.06.2021
Функция, получающая бесконечно малые приращения прибесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной призначении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0, значенияфункции f (x) отличаются сколь угодно мало от её значения f (x0). Точнее, функция f (х) называетсянепрерывной при значении аргумента x0 (или, как говорят, в точке x0), если каково бы ни было ε > 0, можноуказать такое δ > 0, что при |х — х0| < δ будет выполняться неравенство |f (x) — f (x0)| < ε. Это определениеравносильно следующему: функция f (x) непрерывна в точке x0, если при х, стремящемся к x0, значениефункции f (x) стремится к пределу f (x0). Если все условия, указанные в определении Н. ф., выполняютсятолько при х ≥ х0 или только при х ≤ х0, то функция называется, соответственно, непрерывной справа илислева в точке x0. Функция f (x) называется непрерывной н а отрезке [а, b], если она непрерывна в каждойточке х при а < х < b и, кроме того, в точке а непрерывна справа, а в точке b — слева. Понятию Н. ф. противопоставляется понятие разрывной функции (См. Разрывные функции). Одна и таже функция может быть непрерывной для одних и разрывной для других значений аргумента. Так, дробнаячасть числа х [её принято обозначать через (х)], например