ответ:Воспользуемся формулой Лапласа
вероятность, что событие наступит k раз при n испытаниях
P(k) = 1/корень (npq) * ф [ (k-np)/корень (npq) ], где
p - вероятность события, q = 1-p, ф - функция Гаусса
ф (x) = 1/корень (2pi) * e^(-x^2 / 2)
n = 1600, k = 1200, p = 0.8, q = 0.2
np = 1280, корень (npq) = 16
x = (k-np)/корень (npq) = -80 / 16 = -5
ф = 1/корень (2pi) * e^(-x^2 / 2) = 0.3989 * e^(-12.5) = 0,3989*3,731*10^(-6) = 1.488*10^(-6)
P(1200) = 1/16 * 1.488*10^(-6) = 0.93*10^(-7)
вероятность ничтожно мала - меньше одной десятимиллионной
Пошаговое объяснение:Воспользуемся формулой Лапласа
вероятность, что событие наступит k раз при n испытаниях
P(k) = 1/корень (npq) * ф [ (k-np)/корень (npq) ], где
p - вероятность события, q = 1-p, ф - функция Гаусса
ф (x) = 1/корень (2pi) * e^(-x^2 / 2)
n = 1600, k = 1200, p = 0.8, q = 0.2
np = 1280, корень (npq) = 16
x = (k-np)/корень (npq) = -80 / 16 = -5
ф = 1/корень (2pi) * e^(-x^2 / 2) = 0.3989 * e^(-12.5) = 0,3989*3,731*10^(-6) = 1.488*10^(-6)
P(1200) = 1/16 * 1.488*10^(-6) = 0.93*10^(-7)
вероятность ничтожно мала - меньше одной десятимиллионной
Поделитесь своими знаниями, ответьте на вопрос:
Т.е. среднее арифметическое 9 чисел, равное 19, можно записать как:
х/9=19, где х - это сумма девяти чисел. Отсюда находим эту сумму: х=9*19=171.
Затем к этим 9ти числам, сумма которых 171 мы прибавляем ещё одно число (допустим, у), теперь чисел 10, делим их сумму на их кол-во:
(171+у)/10 = 20 (из условия). Отсюда находим у:
171+у=200 => y=29
ответ: 29.