4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Пошаговое объяснение:
1) В полученном прямоугольном треугольнике диагональ призмы является гипотенузой, а диагональ боковой грани и сторона квадрата, который лежит в основании, - катетами.
2) Выражаем катет, являющийся стороной квадрата (обозначим его в), через а:
катет равен другому катету, умноженному на тангенс угла, противолежащего этому катету:
в = а * tg альфа.
3) Теперь в боковой грани находим высоту (обозначим её с):
с^2 (квадрат катета) = a^2 (квадрат гипотенузы) - (а * tg альфа)^2 (квадрат другого катета) ; отсюда c = a √ (1 - tg^2 альфа) .
4) Находим площадь боковой поверхности призмы (площадь одной грани умножить на 4):
4 * (а * tg альфа) * (a √ (1 - tg^2 альфа)) = 4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Пошаговое объяснение:
1) В полученном прямоугольном треугольнике диагональ призмы является гипотенузой, а диагональ боковой грани и сторона квадрата, который лежит в основании, - катетами.
2) Выражаем катет, являющийся стороной квадрата (обозначим его в), через а:
катет равен другому катету, умноженному на тангенс угла, противолежащего этому катету:
в = а * tg альфа.
3) Теперь в боковой грани находим высоту (обозначим её с):
с^2 (квадрат катета) = a^2 (квадрат гипотенузы) - (а * tg альфа)^2 (квадрат другого катета) ; отсюда c = a √ (1 - tg^2 альфа) .
4) Находим площадь боковой поверхности призмы (площадь одной грани умножить на 4):
4 * (а * tg альфа) * (a √ (1 - tg^2 альфа)) = 4а^2 * (tg альфа) * (√ (1 - tg^2 альфа)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите объем прямоугольного параллелепипеда, если сумма длины и высоты равна 49 см, сумма ширины и высоты 52 см, а сумма длин всех ребер 74 см
ширина = y
длина = z
система из трех уравнений:
x + z = 49
x + y = 52
4x + 4y + 4z = 74
решаем третье уравнения из системы
4 (x+y+z) = 74
x+y+z=18,5
из второго уравнения (x+y=52) мы можем подставить в третье:
52 + z = 18,5
z = -33,5
длина стороны не может быть отрицательным числом. ошибка в условии задания.