пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. совместная работа двух бригад 6 ч. если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
d=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: или первая за 12 часов и вторая за 12 часов; или первая за 10 часов и вторая за 15 часов.
Хохлова Иванович
23.04.2023
Скорость заполнения бассейна первой трубой: v₁ = 1/20 (басс. в мин.) скорость заполнения бассейна второй трубой: v₂ = 1/15 (басс. в мин.) скорость заполнения бассейна двумя трубами: v = v₁+v₂ = 1/20 + 1/15 = 3/60 + 4/60 = 7/60 (басс. в мин.) объем воды, поступившей в бассейн за 10 минут: v = vt = 7/60 * 10 = 70/60 = 7/6 = 1 1/6 (бассейна) так как 1 1/6 бассейна больше целого бассейна на 1/6, то целый бассейн заполнится двумя трубами за: t₁ = v₀/v = 1: 7/60 = 60: 7 ≈ 8 мин 40 c ответ: бассейн заполнится двумя трубами за 8 мин 40 с.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вмагазине 28 плит 2/7 из них имеет оборудование газ контроль остальные нет. сколько плит оборудовано газ контроль
пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. совместная работа двух бригад 6 ч. если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
d=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: или первая за 12 часов и вторая за 12 часов; или первая за 10 часов и вторая за 15 часов.