(к сожалению, скобки не отображаются)
Натуральные числа (N) - те целые числа, что мы используем при счёте, не включая 0. Т.е. N={1, 2, 3, 4, 5, 6...} Выпишем такие элементы из множества А в подмножество В.
В={5}
Записывается это так: В⊂А (В включено в А, или В - часть множества А, В - подмножество множества А)
Целые числа (Z) - это множество значений координатной прямой, которые имеют вид a,(0), т.е. все натуральные числа, нуль и все отрицательные числа. Выпишем такие элементы из множества А в подмножество С.
С={-4; 0; 5}
Запишем, как С⊂А (С включено в А, или С - часть множества А, С - подмножество множества А)
Рациональные числа (Q) - это подмножество множества действительных чисел, которые можно записать в виде дроби
. Иными словами, все приведённые в множестве А значения входят в множество рациональных чисел. Значит, множество А полностью соответствует множеству D.
Диаграмму представлю в прикрепе...
Пошаговое объяснение:
Равные стороны квадрата со стороной 1 разделены на разные по величине отрезки. Горизонтальная сторона на 120 частей, а вертикальная - на 90.
1/90 : 1/120 = 1/3 : 1/4 = 4 : 3 ----- отношение величин отрезков
Т.е. 3 части по 1/90 вертикальной стороны соответствуют по величине 4 частям по 1/120.
3/90 = 4/120
3/90 Х 4/120 ---- это самый маленький квадрат
Если добавлять каждый раз с вертикальной стороны по 3 отрезка(3*1/90=3/90), а с горизонтальной стороны по 4 отрезка (4*1/120=4/120), получим последовательность увеличивающихся в размере квадратов, самый большой из которых - исходный, со стороной 90/90 (или 120/120)
3/90; 6/90; 9/90; ... ; 84/90; 87/90; 90/90
Формула общего члена этой последовательности:

Отсюда мы можем найти число разных квадратов n:

аn = 90/90; а₁ = 3/90; d = а₂ - а₁ = 6/90 - 3/90 = 3/90
n = (90/90 - 3/90)/(3/90) + 1
n = 30
ответ: 30 видов квадратов ( с разными сторонами)

Поделитесь своими знаниями, ответьте на вопрос:
3x= 32
x=10 и 2/3