AnvarzhonovichNadezhda1071
?>

Ұзындығы 12см тік төртбұрыш берілген.қабырғасы осы тік төртбұрыштың енінен 1см кем квадраттың периметрі берілген тік төртбұрыштың периметрін 10см кем.тік төртбұрыштың ені неше сантиметр? теңдеу құру арқылы шығару

Математика

Ответы

nchalov2
(12+х)*2=4*(х-1)+10 24+2х=4х-4+10 24+2х=6-24 -2х=-18 Х=-18:(-2) Х=9
juliaipatova1739

1) Y - центральный и X - вписанный углы

  Центральный угол равен дуге на которую он опирается, вписанный же половине

X=60 градусов, Y=120 градусов

2) синус угла равен отношению противолежащей стороны к гипотенузе, из рисунка это отношение 3/5=0,6

3) По равенству сторон заметно что искоемое значение является средней линией треугольника, а так как средняя линяя равна половине основания, то x=4

4) Это египетский треугольник со сторонами 3 4 5, x=4

   Можно найти по теореме пифагора a^2=c^2-b^2= 25 - 9 = 16, откуда x=4

5) Площадь параллелограмма равна произведению основания на высоту, проведенную к нему S=ah=3*8=24

6) Противоположные углы параллелограмма равны, откуда Y=54 градуса

   X = (360-54*2)/2 = 126

7) Обе стороны меньше соотвествующих вдважды 12/6=2 8/4=2, коэффециент подобия равен 2

8) Это параллелограмм, противоположные углы равны, значит 150, остальные два угла 180-150=30

   По рисунку видно, что x половина угла x=30/2=15

Вторая часть

1) Радиус описанной окружности равен R=abc/4S из формулы площади треугольника через радиус вписанной окружности S=abc/4R

Найдем гипотенузу по формуле Пифагора c^2=a^2+b^2=144+256=400, откуда c=20

R= (20*16*12) / ( 4 * 0,5 * 12 * 16) = 10, ответ Б

2) Пусть x меньшая, 3x большая сторона, периметр палллелограмма равен P=2ab

   2*(3x+x)=60

   8x=60 x=7,5 3x=22,5, ответ Б

3) составим уравнение, пусть x неизвестный катет, x+8 гипотенуза. По теореме Пифагора:

     20^2 + x^2 = (x+8)^2

     400 + x^2 = x^2 + 16x + 64

     16x = 336

     x=21 x+8=29

     P = 20+21+29 = 70, ответ В

4) пусть диагональ BD=12, диагональ AC=4√3

Диагонали  ромба деляет его на 4 прямоугольных треугольника, при этом катеты равны половине диагоналей и гипотенуза равна стороне ромба.

BO=OD=6

AO=OC=2√3

AB^2=AO^2+OB^2=36+12=48=4√3

AO=1/2AB ⇒ угол ABO=30 градусов, а угол BAO=180-90-30=60

тогда угол B=2ABO=30*2=60, а угол A=2BAO=60*2=120

uchpapt

Рівняння вигляду y'' + p_{1}y' + p_{2}y = 0, де p_{1}, \ p_{2} — задані числа, є лінійним однорідним диференціальним рівнянням (ЛОДР) другого порядку зі сталими коефіцієнтами.

Метод Ейлера (метод характеристичних рівнянь) дозволяє знаходити загальний розв'язок для вказаного рівняння.

Розв'язок цього рівняння шукаємо у вигляді y = e^{kx}, де k — деяка стала (дійсна чи комплексна). Тоді, якщо y = e^{kx}, то y' = ke^{kx}, \ y'' = k^{2}e^{kx}

k^{2}e^{kx} + p_{1}ke^{kx} + p_{2}e^{kx} = 0 \ \ \ | : e^{kx}

k^{2} + p_{1}k + p_{2} = 0 — характеристичне рівняння

Можливі три випадки:

k_{1} і k_{2} — дійсні, k_{1}\neq k_{2}

Фундаментальна система розв'язків: y_{1} = e^{k_{1}x}, \ y_{2} = e^{k_{2}x} — функції лінійно незалежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{k_{1}x}}{e^{k_{2}x}} = e^{(k_{1} - k_{2})x} \neq \text{const}

Загальний розв'язок: y = C_{1}y_{1} + C_{2}y_{2} = C_{1}e^{k_{1}x} + C_{2}e^{k_{2}x}

Приклад: а) y'' - 49y = 0

Метод Ейлера: y = e^{kx}, \ y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Характеристичне рівняння: k^{2} - 49 = 0; \ k^{2} = 49; \ k_{1} = -7, \ k_{2} = 7

Загальний розв'язок: y = C_{1}e^{-7x} + C_{2}e^{7x}

Відповідь: y = C_{1}e^{-7x} + C_{2}e^{7x}

Приклад: в) y'' + 2y' - 3y = 0

Метод Ейлера: y = e^{kx}, \ y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Характеристичне рівняння: k^{2} + 2k - 3 = 0; \ k_{1,2} = \dfrac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} =

= \dfrac{-2 \pm 4}{2} = \left[\begin{array}{ccc}k_{1} = -3\\k_{2} = 1 \ \ \\\end{array}\right

Загальний розв'язок: y = C_{1}e^{-3x} + C_{2}e^{x}

Відповідь: y = C_{1}e^{-3x} + C_{2}e^{x}

k_{1} і k_{2} — дійсні, k_{1} = k_{2}

Якщо покласти y_{1} = e^{k_{1}x}, \ y_{2} = e^{k_{2}x}, то ці функції лінійно залежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{k_{1}x}}{e^{k_{2}x}} = \dfrac{e^{k_{1}x}}{e^{k_{1}x}} = 1 = \text{const}

Фундаментальна система розв'язків: y_{1} = e^{k_{1}x}, \ y_{2} = xe^{k_{1}x} — функції лінійно незалежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{k_{1}x}}{xe^{k_{1}x}} = \dfrac{1}{x} \neq \text{const}

Загальний розв'язок: y = C_{1}y_{1} + C_{2}y_{2} = C_{1}e^{k_{1}x} + C_{2}xe^{k_{1}x}

k_{1} і k_{2} — комплексно спряжені, k_{1,2} = \alpha \pm \beta i, \ \alpha \in \mathbb{R}, \ \beta \in \mathbb{R}, \ i = \sqrt{-1}

Фундаментальна система розв'язків: y_{1} = e^{\alpha x}\cos \beta x, \ y_{2} = e^{\alpha x}\sin \beta x — функції лінійно незалежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{\alpha x}\cos \beta x}{e^{\alpha x}\sin \beta x}} = \text{ctg} \ \beta x \neq \text{const}

Загальний розв'язок: y = C_{1}y_{1} + C_{2}y_{2} = C_{1}e^{\alpha x}\cos \beta x + C_{2}e^{\alpha x}\sin \beta x

Приклад: б) y'' - 4y' + 5y = 0

Метод Ейлера: y = e^{kx}, \ y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Характеристичне рівняння: k^{2} - 4k + 5 = 0; \ k_{1,2} = \dfrac{4 \pm \sqrt{4^{2} - 4 \cdot 1 \cdot 5}}{2 \cdot 1} =

= \dfrac{4 \pm \sqrt{-4}}{2} = \dfrac{4 \pm \sqrt{4} \cdot \sqrt{-1}}{2} = \dfrac{4 \pm 2i}{2} = 2 \pm i

Отже, \alpha = 2, \ \beta = 1

Загальний розв'язок: y = C_{1}e^{2 x}\cos x + C_{2}e^{2 x}\sin x

Відповідь: y = C_{1}e^{2 x}\cos x + C_{2}e^{2 x}\sin x

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Ұзындығы 12см тік төртбұрыш берілген.қабырғасы осы тік төртбұрыштың енінен 1см кем квадраттың периметрі берілген тік төртбұрыштың периметрін 10см кем.тік төртбұрыштың ені неше сантиметр? теңдеу құру арқылы шығару
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Anatolevich667
sharkova1443
kush-2640
liza04521160
burylin9
gk230650
lalaland2744
АлександровнаАслан1571
annasolod
aleksey270593
Катерина Телюкин925
sastakhova
Kuzminastia20038
Юлия Соколовская1568
staskamolbio5152