Газинурович
?>

Найдите значения выражений; 1) (13, 8+14, 9)*11; 2) (27, 2-18, 7)*13;

Математика

Ответы

fermproddk
1 пример
1)13,8+14,9=28,7
2)28,7*11=315,7
2 пример
1)27,2-18,7=8,5
2)8,5*13=110,5
gr1schinanata
Я решил так: Домножаем неравенство на √(2)/2.
\frac{ \sqrt{2} }{2} cosx- \frac{ \sqrt{2} }{2} sinx+cos2x \geq 0 \\ 
cos( \frac{ \pi }{4} )cosx-sin( \frac{ \pi }{4} )sinx+cos2x \geq 0 \\ 
cos( \frac{ \pi }{4}+x)+cos2x \geq 0 \\ 
2cos( \frac{ \frac{ \pi }{4}+3x}{2} )cos( \frac{ \frac{ \pi }{4}-x}{2} ) \geq 0

Теперь ищем нули.
\frac{ \frac{ \pi }{4}+3x}{2} =\frac{ \pi }{2} + \pi n \\ 
x=\frac{ \pi }{4}+ \frac{2 \pi }{3} n \\ 
\frac{ \frac{ \pi }{4}-x}{2}=\frac{ \pi }{2} + \pi k \\ 
x= \frac{5 \pi }{4} +2 \pi k \\ 

n∈Z, k∈Z
Теперь нужно применить метод интервалов. С второй серией корней все ясно, просто отмечаем на триг окружности точку 5pi/4. А как быть с первой серией? Сделаем так, отметим ВСЕ точки,которые дает эта серия, на круге. Подставим k=-1, получим -5pi/12 (эта точка лежит между 3pi/2 и 2pi. 
При k =0: pi/4
При k=1: 11pi/2 (между pi/2 и 5pi/4). Все, если мы теперь возьмем k=2, то мы опять попадем в точку 19pi/12 находящуюся на круге там же где -5pi/12. Мы замкнули круг.
Теперь подставляем значение x из любого промежутка, находим знак функции на этом интервале, а дальше знаки чередуем.
Получаем как раз указанный тобой ответ. 
allo22-27
Теорема. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне. Доказательство. Пусть точки A1, A2, A3 – точки пересечения параллельных прямых с одной из сторон угла. А точки B1, B2, B3 – соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если A1A2 = A2A3, то B1B2=B2B3. Проведем через точку В2 прямую С1С2, параллельную прямой A1A2. Получаем параллелограммы A1C1BA2 и A2B2C2A3. По свойствам параллелограмма, A1A2 = C1B2 и A2A3 = B2C2. Так как A1A2 = A2A3, то C1B2 = B2C2. Δ C1B2B1 = Δ C2B2B3 по второму признаку равенства треугольников (C1B2 = B2C2, ∠ C1B2B1 = ∠ C2B2B3, как вертикальные, ∠ B1C1B2 = ∠ = B3C2B2, как внутренние накрест лежащие при прямых B1C1 и C2B3 и секущей С1С2). Из равенства треугольников следует, что B1B2=B2B3. Теорема доказана.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значения выражений; 1) (13, 8+14, 9)*11; 2) (27, 2-18, 7)*13;
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ИринаАлександровна
maksimforyou20
kapi30
nataljatchetvertnova
Дудина895
Powerbasses5521
turovskaya69
svetegal
andrewshilin1334
varvara-kulkova
ivanovanata36937365
Шапкина1531
Burov1446
alex13izmailov
Chistov9721209