На оптовом рынке продавали картофель в сетках. к концу дня осталось120 сеток с картофелем - в 6 раз меньше, чем было продано.сколько кг картофеля было продано, если в каждой сетке 35 кг картофеля?
Аркадий ест на 25% быстрее, чем георгий. значит, пока георгий съедает 4 г, аркадий за это же время съедает 5 г. сначала брикет мороженого весил x г. за n минут георгий съел 4n г, а аркадий съел 5n г. и у аркадия осталось в 2 раза меньше. (x - 4n) = 2(x - 5n) x - 4n = 2x - 10n x = 6n если бы брикет весил (x+50) г, то у аркадия осталось в 1,5 раза меньше. (x + 50 - 4n) = 1,5(x + 50 - 5n) 2(6n + 50 - 4n) = 3(6n + 50 - 5n) 4n + 100 = 3n + 150 n = 50 минут. x = 6n = 6*50 = 300 г. вес брикета мороженого.
atamanov5
12.06.2020
Пишем характеристическое уравнение: k²+7*k+6=0. оно имеет действительные неравные корни k1=-6, k2=-1. в таком случае общее решение уравнения имеет вид yо=c1*e^(k1*x)+c2*e^(k2*x). в нашем случае yo=c1*e^(-6*x)+c2*e^(-x). дифференцируя это равенство, получаем y'o=-6*c1*e^(-6*x)-c2*e^(-x). подставляя начальные условия, приходим к системе уравнений: c1+c2=1 -6*c1-c2=2 решая эту систему, находим c1=-3/5, c2=8/5. тогда искомое частное решение таково: yч=-3/5*e^(-6*x)+8/5*e^(-x). проверка: yч'=18/5*e^(-6*x)-8/5*e^(-x), yч''=-108/5*e^(-6*x)+8/5*e^(-x). подставляя yч, yч' и yч'' в уравнение, получаем: -108/5*e^(-6*x)+8/5*e^(-x)+126/5*e^(-6*x)-56/5*e^(-x)-18/5*e^(-6*x)+48/5*e^(-x)=0=0, то есть найденное решение удовлетворяет уравнению. теперь находим yч(0)=-3/5+8/5=1 и yч'(0)=18/5-8/5=2, то есть найденное решение удовлетворяет и начальным условиям. значит, оно найдено верно. ответ: yч=-3/5*e^(-6*x)+8/5*e^(-x).
1) 120 * 6 = 720 ( с) продано
2) 35 * 720 = 25 200 ( кг) продано картофеля
ответ : 25 200 кг картофеля было продано .
***************************************************************************************************************************************************************************************************************************