Во-первых, заметим, что ребро такого куба состоит из четырех кубиков, его длина, ширина и объем равен 4 ребрам маленьких кубиков.
В конструкции большого куба есть кубики четырех видов. Рассмотрим каждый отдельно.
1. Угловые. Таких кубиков всего восемь, они расположены по углам большого куба. Они имеют общую грань только с тремя кубиками, ведь их остальные грани обращены наружу.
2. Края. Это кубики, составляющие ребро большого куба. Две из их граней обращены наружу, а четыре граничат с другими кубиками. Таких кубиков на каждом ребре большого куба две штуки (остальные два кубика на ребре являются угловыми). А всего ребер 12. Выходит, таких кубиков в большом кубе 24.
3. Эти кубики составляют поверхность граней большого куба. Одна из их граней обращена наружу, а пять являются общими с другими кубиками.
4. Внутренние кубики. Они находятся внутри большого куба и имеют общую грань с шестью кубиками.
В итоге по условию нам подходят третий и четвертый вид. Теперь нужно сосчитать, сколько же таких кубиков. Для этого можно вычесть из общего числа кубиков (64) кубики 1 вида (их 8) и второго вида (их 24). Получается 32.
ответ: 32
Поделитесь своими знаниями, ответьте на вопрос:
Решите , х*215-4936=63219 (а+523)*306=290700
215х=63219+4936
215х=68155
х=317
2.) 306*(а+523)=290700
306а+160038=290700
306а=290700-160038
306а=130662
а=427