mary---jane49
?>

С207тыс. 25 ед., 60 тыс. 7 ед., 108 тыс. 560 ед., 600 тыс., 548 тыс. 125 ед., 3 тыс. 812 ед., 80 тыс. 80 ед., 45тыс. 45 ед.

Математика

Ответы

vovababkin1477
207025
60007
108560
600000
548125
3812
80080
45045

Удачи тебе в жизни :)
kashschool3
207 025 , 60 007 ,108 560 ,600 000 , 548 125 , 3 812 , 80 080 , 45 045 .
Natalya1895

ФЗФТШМФТИ - 3 Ф, 2 Т, 1 З, 1 Ш, 1 М, 1 И. 9 букв

Сначала расставим 3. Это можно сделать C_9^3 Для остальных букв остается 6 мест. Теперь на них расставим 2 Т. Это можно сделать C_6^2 Для остальных букв остается 4 места. И т.д. Тогда общее количество различных перестановок равно C_9^3*C_6^2*C_4^1*C_3^1*C_2^1*C_1^1=\dfrac{9*8*7}{2*3}*\dfrac{6*5}{2}*4*3*2=9*8*7*6*5*2=30240

a) В любой перестановке будет не более одного подслова «ТШ».

Подсчитаем все перестановки, его содержащие. Ш может стоять на любом месте со2 по 9ое => вариантов расстановки 8. Автоматически на предшествующее место ставим одну Т. Осталось расставить 3 Ф, 1 Т, 1 З, 1 М, 1 И. По аналогии с общим случаем, получаем общее число перестановок 8*C_7^3*C_4^1*C_3^1*C_2^1*C_1^1=8*\dfrac{7*6*5}{2*3}*4*3*2=8*7*6*5*4=6720

Тогда ответ на этот пункт - 30240-6720=23520

b) В любой перестановке будет не более одного подслова «ФЗ».

Подсчитаем все перестановки, его содержащие. З может стоять на любом месте со2 по 9ое => вариантов расстановки 8. Автоматически на предшествующее место ставим одну Ф. Осталось расставить 2 Ф, 2 Т, 1 Ш, 1 М, 1 И. По аналогии получаем общее число перестановок  8*C_7^2*C_5^2*C_3^1*C_2^1*C_1^1=8*\dfrac{7*6}{2}*\dfrac{5*4}{2}*3*2=8*7*6*5*3*2=10080

Тогда ответ на этот пункт - 30240-10080=20160

c)  В любой перестановке будет не более двух подслов «ФТ».

В данном случае при аналогичном подходе мы будем учитывать слова с двумя «ФТ» 2 раза: один раз для "правого" подслова, и один для левого. Потому нужно будет отдельно найти число слов, содержащих 2 подслова.

Подсчитаем все перестановки. T может стоять на любом месте со2 по 9ое => вариантов расстановки 8. Автоматически на предшествующее место ставим одну Ф. Осталось расставить 2 Ф, 1 Т, 1 З, 1 Ш, 1 М, 1 И. По аналогии получаем общее число перестановок  8*C_7^2*C_5^1*C_4^1*C_3^1*C_2^1*C_1^1=8*\dfrac{7*6}{2}*5*4*3*2=20160

Теперь для 2 подслов:

Сначала выставим "левое" подслово. Если справа осталось k>1 мест, то расставить на них подслово можно, очевидно Тогда общее число расстановки двух подслов равно

6+5+4+3+2+1=21 . Осталось расставить 1 Ф, 1 З, 1 Ш, 1 М, 1 И Тогда  общее число перестановок 21*5*4*3*2*1=2520

Тогда ответ 30240-20160+2520=12600

turoverova5
В заданном неравенстве (b+2)x^2-(b+1) x +2>0 левая часть - квадратный трёхчлен. Его общий вид: ах²+вх+с.

Пусть f(x) = ax² + bx + c, a ≠ 0.
Для того, чтобы корни данного квадратного трёхчлена были больше некоторого числа t, необходимо и достаточно, чтобы выполнялась следующая система условий:  D ≥ 0, a · f(t) > 0, x₀ > t (это абсцисса вершины параболы, t = 0 по заданию).

Находим дискриминант: D=b²-4ac.
D=b²+2b+1-4(b+2)*2 = b²-6b-15.
Приравниваем его нулю: b²-6b-15 = 0.
Квадратное уравнение, решаем относительно b: 
Ищем дискриминант:D=(-6)^2-4*1*(-15)=36-4*(-15)=36-(-4*15)=36-(-60)=36+60=96;
Дискриминант больше 0, уравнение имеет 2 корня:b₁=(√96-(-6))/(2*1)=(√96+6)/2=√96/2+6/2=√96/2+3 = 2√6+3 ≈ 7.89898;

b₂=(-√96-(-6))/(2*1)=(-96+6)/2= -96/2+6/2=- √96/2+3 = -2√6+3 ≈ -1.89898.

Находим a · f(t):
f(0) = (b+2)*0²-(b+1)*0+2 = 2.
a · f(t) = (b+2)*2 = 2b+4.
Находим условие a · f(t) > 0: 
2b+4 > 0,
2b > -4,
b > -2.

Проверяем третье условие: x₀ > t.
x₀ = -b/2а = (b+1)/(2b+4) > 0.
b > -1.
Совместное выполнение всех условий даёт ответ:
чтобы неравенство (b+2)x^2-(b+1) x +2>0 выполнялось при любых действительных значениях x, параметр b должен находиться на отрезке:
3-2√6 < b < 3+2√6.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

С207тыс. 25 ед., 60 тыс. 7 ед., 108 тыс. 560 ед., 600 тыс., 548 тыс. 125 ед., 3 тыс. 812 ед., 80 тыс. 80 ед., 45тыс. 45 ед.
Ваше имя (никнейм)*
Email*
Комментарий*