Часто на картах мерой масштаба служит сантиметр, а мерой местности - метр или километр.
Наиболее применяемые карты в метрических мерах - это крупномасштабные карты, к ним относятся следующие:
- карта в масштабе 250 м в 1 см (1:25 000);
- карта в масштабе 500 м в 1 см (1:50 000);
- карта в масштабе 1 км в 1 см (1:100 000).
Масштабы карт обозначаются в нижнем обрезе карты за рамкой.
Измеряем линейкой расстояние между пунктами А и В
Например, если нам дан масштаб 1/10 000, или 1:10 000, или 10 000, то это значит, что каждой линии, взятой с карты, соответствует на местности линия в 10 000 раз большая.
Так, если расстояние между пунктами А и В = 10 см - на карте будет действительной величиной этой линии на местности 10х10 000 = 100 000 см, или 100 000/100 = 1000 м, или 1 км.
Пошаговое объяснение:
у min = -3,833
у max = 1,5
Пошаговое объяснение:
1) Исследуем функцию на наличие локальных экстремумов. Иначе говоря: есть ли на участке от -1 до + 3 такие точки, в которых график функции поднимается вверх, а затем опускается вниз, либо наоборот опускается вниз, а затем поднимается; в первом случае это будет максимум функции, а во втором - минимум. При этом, если не сделать такого исследования, то можно ошибочно принять за минимум значение у в крайней левой точке, где х = -1 (понятно, что эта функция растёт) либо (также ошибочно) принять за максимум функции крайнюю правую точку графика, где х = 3. А получится так, что выбросы вверх или вниз внутри этого участка окажутся выше или ниже. Именно с этой целью делается проверка.
2) Общее правило поиска экстремумов функции: в точках экстремумов первая производная равна нулю.
Первая производная - это касательная к графику; в точках экстремумов она равна нулю.
В данном случае - все табличные значения производной:
а) константа выносится за знак производной (в первой дроби константа = 1/3; во второй дроби константа равна 3/2; в 2х константа равна 2);
б) производная степени равна произведения показателя степени на х в степени на 1 меньше (производная х^3 = 3x^2; производная х^2 = 2х; производная х = 1).
Получаем искомое уравнение первой производной, которое приравниваем к нулю:
х^2 - 3x + 2=0
Корнями этого уравнения являются:
х1 = 1, х2 = 2.
3) Анализируем уравнение производной до точки +1. Подставим в уравнение производной любое значение, которое находится на числовой оси х левее точки +1. Удобнее всего взять 0. При х = 0 производная равна +2. Знак плюс говорит о том, что функция возрастает, а это значит, что точка х1 = + 1 является локальным максимумом:
у = 0,833.
4) Аналогично можно убедиться в том, что на участке от х=+1 до х2=+2 функция убывает. Например, возьмём х = 1,5. Получаем ответ: - 0,25. Знак минус производной говорит о том, что функция убывает и в точке х2 = 2 принимает минимальное значение (локальный минимум):
у = 0,667.
5) После точки х=+2 производная больше 0, следовательно, функция возрастает.
6) Проверяем крайние точки на глобальные минимум и максимум:
а) при х = -1 функции равна -3,833; затем, как мы установили, она до + 1 возрастает; затем на участке от +1 до + 2 уменьшается, но только до значения 0,677, которое не перекрывает -3,833;
вывод: у min = -3,833.
б) аналогично делаем вывод о том, что при х = 3, функция принимает максимальное значение:
у max = 1,5
наименьшее значение функции у min = -3,833
наибольшее значение функции у max = 1,5
Поделитесь своими знаниями, ответьте на вопрос:
На столе стоят 6 стаканов, в которые налиты молоко и кефир-по три стакана каждого напитка.оля, таня и петя взяли по одному стакану.составьте таблицу вариантов выбора напитков каждым из детей.
Кефир Кефир Кефир
Кефир Кефир Молоко
Кефир Молоко Кефир
Кефир Молоко Молоко
Молоко Кефир Кефир
Молоко Молоко Кефир
Молоко Кефир Молоко
Молоко Молоко Молоко