а) x+12=67 б) 15-y=8 в) 9y=72 г)-2x=10 д)13у + 15у – 24 = 60
x=67-12 y=15-8 y=72:9 x=10:(-2) 28y=60+24
x=55 y=7 y=8 x=-5 28y=84
y=84:28
y=3
е) 6z + 5z – 44 =0 ж) (у – 35) + 12 = 32 з) х – 35 – 64 = 16
11z=44 y-35=32-12 x=35+64+16
z=44:11 y=55 x=115
z=4
и) 55 – (х – 15) = 30
55+x+15=30
x=-40
Поделитесь своими знаниями, ответьте на вопрос:
1) 10% от чисел 30, 57, 125, 200, 250, 310; 2) 50% от чисел 16, 24, 72, 96, 114, 400: 3) 25% от чисел 28, 36, 68, 100, 232, 360.
Квадрат АВСD и цилиндр расположены таким образом, что АВ – диаметр верхнего основания цилиндра, а СD лежит в плоскости нижнего основания и касается его окружности.
а) Докажите, что плоскость квадрата наклонена к плоскости основания цилиндра под углом 60°.
б) Найдите длину той части отрезка ВD, которая находится внутри цилиндра, если образующая цилиндра равна \sqrt 6.
Решение
Главное в этой задаче – хороший рисунок.
а) Пусть A_1 и B_1 - проекции точек А и В на нижнее основание цилиндра. Покажем, что угол между плоскостями ABC и A_1 B_1 C равен 60°.
Пусть М – точка касания окружности нижнего основания цилиндра и прямой DC.
A_1 B_1 \parallel CD,
Tочка М - середина CD.Очевидно, O_1 M\perp CD
Обозначим O_1 M=r;\ r=\frac {1}{2}A_1 B_1=\frac {1}{2} AB.
Тогда OM=AD=2r.
В треугольнике OO_1 M гипотенуза ОМ в 2 раза больше катета O_1 M .
Значит, ∠O_1 OM=30^{\circ}, ∠OMO_1=60^{\circ} . Угол ∠OMO_1 - это угол между плоскостями (ABC) и ( A_1 B_1 C) .
б) Пусть длина образующей цилиндра AA_1=\sqrt 6 ,
F – точка пересечения отрезка BD с поверхностью цилиндра, F_1 – проекция точки F на плоскость A_1 B_1C.
В пункте (а) мы нашли, что OM =2r. Тогда OO_1= AA_1=r\sqrt 3 - образующая цилиндра.
Поскольку AA_1=\sqrt 6, найдем r=\sqrt 2.
Теперь нам известны стороны квадрата. AD=BC=AB=2\sqrt 2.
Диагональ квадрата АВСD в \sqrt 2 раз больше его стороны, поэтому BD=2\sqrt 2\cdot \sqrt 2=4 .
Из ∆A_1 B_1 D :
B_1D=\sqrt{(2r)^2+r^2}=r\sqrt{5}=\sqrt{10},
\cos \angle A_1B_1D=\frac{2r}{r\sqrt{5}}=\frac{2}{\sqrt{5}};
\angle A_1F_1B_1=90^{\circ} (опирается на диаметр A_1B_1),
B_1F_1=A_1B_1\cdot \cos \angle A_1B_1D=2r\cdot \frac{2}{\sqrt{5}}=\frac{4r}{\sqrt{5}}=\frac{4\sqrt{2}}{\sqrt{5}};
Тогда
F_1D=B_1D-B_1F_1=\sqrt{10}-\frac{4\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};
\Delta BB_1D\sim \Delta FF_1D;
\frac{B_1D}{F_1D}=\frac{BD}{FD};\ FD=\frac{F_1D\cdot BD}{B_1D}=\frac{\sqrt{10}\cdot 4}{5\cdot \sqrt{10}}=\frac{4}{5};
BF=BD-FD=4-\frac{4}{5}=\frac{16}{5}.
ВF – это часть отрезка ВD, которая находится внутри цилиндра. Она равна \frac{16}{5}.
б) \frac{16}{5}
Поделиться страницей
Это полезно
© ЕГЭ-Студия
Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.