Sqrt{3} и 1/3 можно расписать как 3^1/3 и 3^-1 соответственно. Теперь мы сможем воспользоваться свойством сложения логарифмов с одинаковыми основаниями (loga(b)+loga(c)=loga(b*c)). Имеем: logsqrt{3}(81/sqrt{5}+sqrt{2})+log1/3(1/7+2sqrt{10})=log3^1/2(81/sqrt{5}+sqrt{2})+log3^-1(1/7+2sqrt{10}=2log3(...)-1log3(...)=log3(81/sqrt{5}+sqrt{2})^2+log3(1/7+2sqrt{10})^-1 (степень от основания пошла к числу) <=> log3((81/sqrt{5}+sqrt{2})^2 • (1/7+2sqrt{10})-1)=log3(6561*(7+2sqrt{10}/7+2sqrt{10}=log3(6561)=8 (3^8=6561); (sqrt{5}+sqrt{2})^2=5+2*sqrt{2}*sqrt{5}+2=5+2sqrt{10}+2=7+2sqrt{10}. ответ: 8. При решении использовались основные свойства логарифмов.
Avshirokova51
03.05.2020
danya1509379
03.05.2020
Чтобы решить данную задачу можно воспользоваться свойствами четности и нечетности. Как известно н+ч=н ч+ч=ч н+н=ч Поскольку у нас должно получится 17 кг гвоздей, то (17- нечетное число), то нам подходит только один вариант н+ч=н
Сколько бы мы не взяли ящиков по 2 кг, получится четное число, поэтому рассмотрим ящики по 3 кг гвоздей. Причем нечетное число получится только если количество ящиков будет тоже нечетным (н*н=н). 1 вариант 1 ящик по 3 кг 17-3=14 кг в ящиках по 2 кг. 14:2=7 ящиков Т.е. 1 ящик по 3 кг, и 7 ящиков по 2 кг. 3+7*2=17 кг
2 вариант 3 ящика по 3 кг 17-3*3=8 кг в ящиках по 2 кг 8:2=4 ящика Т.е. 3 ящик по 3 кг, и 4 ящика по 2 кг. 3*3+2*4=17 кг
3 вариант 5 ящиков по 3 кг 17-5*3=2 кг в ящиках по 2 кг 2:2=1 ящик Т.е. 5 ящиков по 3 кг, и 1 ящик по 2 кг. 5*3+2*1=17 кг
Больше вариантов нет, т.к. меньше 1 ящика по 2 кг быть не может.