fialkaflowers77
?>

Некоторое натуральное число, большее 4, обозначили буквой a . запишите четыре числа, которые в натуральном ряду предшествует числу a, и три числа , которые следуют за числом a

Математика

Ответы

YuRII1236
Меньше числа а- один, 2, 3, 4. а больше 9 8 7. скорее всего так
Светлана
А-5;числа до а 1 2 3 4; числа после а 6 7 8
Yevgeniya1807

1) 0.66

2) 0.38

Пошаговое объяснение:

заводы поставляют чайники в соотношении 2: 5: 7 соответственно, значит всего 2+5+7=14 частей

Первый завод 2/14=1/7 часть всех чайников

Второй: 5/14

Третий: 7/14=1/2

Вероятность того, что чайник с первого завода качественный равна: 1-0,2=0,8

Вероятность того, что чайник со второго завода качественный равна: 1-0,3=0,7

Вероятность того, что чайник с третьего завода качественный равна: 1-0,4=0,6

1) А-чайник качественный.

Гипотезы:

H₁, H₂, H₃ - чайник изготовил 1, 2, 3 заводы соответственно.

P(H₁)=1/7; P(H₂)=5/14; P(H₃)=1/2

Условные вероятности:

A/H₁, A/H₂, A/H₃ - чайник качественный, при условии что его изготовил 1, 2, 3 заводы соответственно.

P(A/H₁)=0.8; P(A/H₂)=0.7; P(A/H₃)=0.6

Формула полной вероятности:

P(A)=P(H₁)*P(A/H₁)+P(H₂)*P(A/H₂)+P(H₃)*P(A/H₃)

P(A)=\frac{1}{7}*0.8+\frac{5}{14}*0.7+\frac{1}{2}*0.6 \approx 0.66

2) Н₂/A - на втором заводе изготовили качественный чайник:

По формуле Байеса:

P(H_2/A)=\frac{P(H_2)*P(A/H_2)}{P(A)} \\ \\ P(H_2/A)=\frac{\frac{5}{14}*0.7 }{0.66} \approx=0.38

azarov8906

Пусть случайное событие A — выбран качественный чайник, а гипотезы H_{1}, ~ H_{2} и H_{3} — качественный чайник соответственно с первого, второго и третьего заводов. Тогда вероятность наступления события A, если наступит конкретная гипотеза:

P(A | H_{1}) = 1 - 0,2 = 0,8

P(A | H_{2}) = 1 - 0,3 = 0,7

P(A | H_{3}) = 1 - 0,4 = 0,6

Пусть k — коэффициент пропорциональности. Тогда 2k, ~ 5k и 7k — поступление чайников из соответственно первого, второго и третьего заводов. Найдем по классической вероятности наступление гипотез:

P(H_{1}) = \dfrac{2k}{2k + 5k + 7k} = \dfrac{2k}{14k} = \dfrac{1}{7}

P(H_{2}) = \dfrac{5k}{2k + 5k + 7k} = \dfrac{5k}{14k} = \dfrac{5}{14}

P(H_{3}) = \dfrac{7k}{2k + 5k + 7k} = \dfrac{7k}{14k} = \dfrac{1}{2}

Воспользуемся формулой полной вероятности наступления события A\colon

P(A) = P(H_{1}) P(A|H_{1}) + P(H_{2}) P(A|H_{2}) + P(H_{3}) P(A|H_{3}) =\\\\= \dfrac{1}{7} \cdot 0,8 + \dfrac{5}{14} \cdot 0,7 + \dfrac{1}{2} \cdot 0,6 = \dfrac{93}{140} \approx 0,66.

Тогда по формуле Байеса найдем вероятность того, что если чайник качественный, то он изготовлен на втором заводе:

P(H_{2}|A) = \dfrac{P(A|H_{2}) P(H_{2})}{P(A)} = \dfrac{0,7 \cdot \dfrac{5}{14} }{\dfrac{93}{140} } = \dfrac{35}{93} \approx 0,38.

ответ: 1) 0,66; 2) 0,38.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Некоторое натуральное число, большее 4, обозначили буквой a . запишите четыре числа, которые в натуральном ряду предшествует числу a, и три числа , которые следуют за числом a
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Александровна1742
Vitalevna1186
Девяткина_Арсений
Zukhra Andreevich1040
moonligh3560
majorovnatalya5
asl09777
Vyacheslavovich-Gubanov
missbuhgalter2013
Диана-Николаевна377
beliaeva2
lenalevmax7937
Чубкова1290
kyzua2475
travkinadjey31