Две двухрублевые монеты должны лежать в одном кармане. Значит, либо эти две монеты переложили во второй карман, либо после перекладывания трех монет они остались в первом кармане.
Случаи, когда две двухрублевые монеты переложили во второй карман (для удобства обозначим двухрублевую монету - 2, монету в один рубль - 1):
1) 1, 2, 2 2) 2, 1, 2 3) 2, 2, 1
Случай, когда обе двухрублевые монеты остались в первом кармане (это значит, что во второй карман переложили только монеты по одному рублю):
4) 1, 1, 1
Посчитаем вероятность первого события: 1, 2, 2.
Всего монет 4+2 = 6. Перекладываем монету в 1 рубль. Благоприятных событий 4 (т.к. всего 4 монеты по 1 рублю). Вероятность того, что первой будет переложена монета в один рубль
Теперь монет осталось 5, а двухрублевых монет 2. Вероятность того, что второй будет переложена монета в 2 рубля
Осталось 4 монеты. Из них одна монета в 2 рубля. Вероятность того, что третьей монетой будет преложена монета в 2 рубля
Вероятность того, что во второй карман будут переложены монеты: 1, 2, 2.
Рассмотрим второй случай: 2, 1, 2. Вероятность того, что сначала будет переложена монета в 2 рубля
Вероятность того, что второй будет переложена монета в 1 рубль
Вероятность того, что третьей будет переложена монета в 2 рубля
Вероятность события, что будут переложены монеты 2, 1, 2:
Посчитаем вероятность третьего случая: 2, 2, 1
Вероятность того, что первой переложена будет монета в 2 рубля
Вероятность того, что второй будет переложена монета в 2 рубля
Вероятность того, что третьей будет переложена монета в 1 рубль
Вероятность наступления события, что будут переложены монеты 2, 2, 1
Посчитаем вероятность наступления четвертого события: 1, 1, 1.
Вероятность того, что первой будет переложена монета в 1 рубль
Вероятность того, что второй будет переложена монета в 1 рубль
Вероятность того, что третьей будет переложена монета в 1 рубль
Вероятность того, что переложены будут монеты 1, 1, 1:
Нас устраивает наступление любого из рассмотренных четырех событий, поэтому все эти вероятности складываем.
ответ: 0,4
gurina50
03.03.2020
В году в среднем 365 дней. В среднем 52-53 понедельника. Пусть все числа в году будут под номерами от 1 до 365. Тогда 13 число месяца ( начиная с января) встречается в следующие по счету дни: 13 , 13+31= 44 , 44+28= 72 , 72+31=103, 103+30=133, 133+31= 164, 164+30= 194, 194+31= 225, 225+30 = 255, 255+31= 286, 286+30 = 316, 316+31 = 347 Теперь сколько раз повторяются дни недели (разделим на 7, посмотрим остатки) 13:7= 1 ост.6 72 :7 = 10 ост.2 103: 7 = 14 ост. 5 133: 7= 19 ост.0 164:7 = 23 ост. 3 194:7= 27 ост.5 225 : 7=32 ост.1 255 :7 =36 ост.3 286 :7=40 ост. 6 316 : 7= 45 ост.1 347:7=49 ост.4 Если мыслить логически , то все остатки от 0 до 6 ( пн.-воскр.) присутствуют , т.е. на 13 число может выпасть любой день недели. Остаток 0 - выпадает один раз , значит наименьшее количество понедельников с 13 числом - 1 день в году. Остаток 3 - выпадает больше раз, чем все остальные числа - 3 раза , значит наибольшее количество понедельников с 13 числом - 3 раза в год . ответ: 3 раза в год - наибольшее количество понедельников с 13 числом. Может и можно решить как-то проще, но .. я не знаю как.
Краткая запись во вложении.
1) 10 - 6 = 4 пирожка - с луком
ответ: 4 пирожка с луком.