lilit-yan
?>

14+34; 14-34; 34-14 ; -34-14 какое из данных выражений имеют равные значения

Математика

Ответы

nsmmkrtchyan

-14+34=34-14=20

14-34=-20

34-14 =20

-34-14=-48

равные значения имеют : -14+34 и 34-14

ivanlimeexpo
-14+34=20
14-34=-20
34-14=20
-34-14=-48
koldunovan

<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но

< DAM=<BAM, т.к. АМ - биссектриса, значит

<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.

<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но

<ADM=CDM, т.к. DM - биссектриса, значит

<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.

АВ=CD=BM=CM

Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:

АВ=AN-BN, BN=AN-AB=10-x

Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:

- ВМ=СМ;

- <BMN=<CMD как вертикальные углы;

- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит

BN=CD=x

Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:

10-х=х

2х=10

х=5

АВ=CD=5 см, AD=BC=5+5=10 см

Р ABCD = 2AB+2BC=2*5+2*10=30 см

alf206

<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но

< DAM=<BAM, т.к. АМ - биссектриса, значит

<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.

<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но

<ADM=CDM, т.к. DM - биссектриса, значит

<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.

АВ=CD=BM=CM

Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:

АВ=AN-BN, BN=AN-AB=10-x

Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:

- ВМ=СМ;

- <BMN=<CMD как вертикальные углы;

- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит

BN=CD=x

Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:

10-х=х

2х=10

х=5

АВ=CD=5 см, AD=BC=5+5=10 см

Р ABCD = 2AB+2BC=2*5+2*10=30 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

14+34; 14-34; 34-14 ; -34-14 какое из данных выражений имеют равные значения
Ваше имя (никнейм)*
Email*
Комментарий*