1) n = 8 - количество облигаций
p = 0.25 - вероятность выигрыша по одной облигации
q = 1 - p = 1 - 0.25 = 0.75
m - количество выигрышных облигаций
A = {выигрыш по 6 облигациям}
По формуле Бернулли
P(A) = P(m=6) = C(6;8)*((0.25)^6)*((0.75)^2) =
= 28*(0.000244140625)*(0.5625) =
= 0.00384521484375
2) Видимо, предполагается, что ненастные дни в сентябре распределены равномерно. Тогда в среднем за десять дней (это треть месяца) наступит ненастных. Ну, число дней дробным не бывает, а ближе всего среднее значение к 4.
Значит, вероятнее всего, в первой декаде сентября будет четыре ненастных дня. Соответственно, ясных - шесть.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
17 в квадрате минус 209 найти решение
289-209= 89
Так же?