Мардану 7 лет, причем он на 25 лет младше отца. 7+25=32л
manimen345
11.01.2020
N = p1*p2*p3 11N = 11*p1*p2*p3 Если у числа 11N три простых делителя, то одно из них p1 = 11. 6N = 2*3*p1*p2*p3 = 2*3*11*p2*p3 Если у него 4 простых делителя, то одно из чисел p2 = 2 или 3. Пусть p2 = 2, тогда p3 не равно 3, потому что иначе получится 6N = 2*2*3*3*11 - имеет только 3 простых делителя 2, 3 и 11. Значит, p3 равно наименьшему из оставшихся простых чисел, то есть 5. ответ: N = 2*5*11 = 110 - имеет простые делители 2, 5, 11. 11N = 11*110 = 2*5*11*11 = 1210 - имеет простые делители 2, 5, 11. 6N = 660 = 2*2*3*5*11 - имеет простые делители 2, 3, 5, 11
almihanika435
11.01.2020
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).