Скорость - это первая производная от расстояния S. Ускорение - вторая производная от S.
В данном задании будем находить первообразные.
a(t)= 6t+2.
Скорость есть интеграл по времени от функции ускорения. (первообразная)
v= ∫ (a) dt
v= 6× t²/2+2t+C= 3t²+2t+C.
Известно, что в момент времени t = 1c скорость точки v= 4м/с. Значит:
4= 3+2+С;
С= 4 - 5= -1
Скорость v=3t²+2t - 1.
Расстояние есть интеграл по времени от функции скорости. (первообразная)
S= ∫(v) dt
S= 3×t³/3 + 2t²/2 - t +C = t³+t² - t+C.
Известно, что в момент времени t= 1c путь S = 3 м. Значит:
3= 1+1-1+С;
С= 3-1=2.
S= t³+t - t+2.
Закон движения данной точки задаётся формулой s(t)= t³+t² - t+2.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите: a) нок (8 и 12) , в) нок ( 2, 4 и 7) только напишите ещё общие кратные числа) заранее .
Общие кратные чисел:8 и 12
НОК (8)={8,16,24,32,40}
НОК(12)={12,24,36}
НОК(8 и 12)=24
Общие кратные чисел: 2,4 и 7
НОД(2)={2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}
НОД(4)={4,8,12,16,20,24,28,32}
НОД(7)={7,14,21,28,35}
НОД(2,4,7)=28