Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.
Свойства куба
Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
В куб можно вписать тетраэдр двумя В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.
В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.
Правильный тетраэдр
Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер.
Свойства тетраэдра
Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
Все медианы тетраэдра пересекаются в одной точке, которая делит их в отношении 3:1, считая от вершины (теорема Коммандино). В этой же точке пересекаются и бимедианы тетраэдра, которые делятся ею пополам.
Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра, делит его на две равные по объёму части.
Тетраэдры в живой природе
Тетраэдр из грецких орехов
Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.
Поделитесь своими знаниями, ответьте на вопрос:
Заполните таблицу зная что в ней говарится о кубе ребро -- 1см площадь поверхности 150mm2 -- диаганаль грани -- --
Ребро - а
Площадь поверхности S=6*a²
Диагональ грани d=a√2
Вернёмся к таблице. Посмотрим на первый столбец. У нас известна площадь поверхности 150 мм². Найдём ребро куба.
150=6*а²
а²=150:6
а²=25
а=5 мм - ребро куба
а=-5 не удовлетворяет условию
теперь найдём диагональ куба: d=5√2 мм
Рассмотрим второй столбец таблицы. известно ребро куба (1 см). Значит площадь поверхности S=6*1²=6 см²
Диагональ грани: d=1*√2=√2 см
Заполненая таблица выглядит так:
Ребро 5 мм 1 см
Площ. поверхн. 150 мм² 6 см²
Диаганаль грани 5√2 мм √2 см