Рассмотрим максимальное число победных игр: 75 : 3 = 25 (игр), но при таком варианте игр вничью быть не может.
Будем уменьшать число победных игр и считать, сколько за это команда получит очков. Предположим, что победных игр 24: 24 · 3 = 72. Таким образом, в данной конфигурации может быть 24 победы, 3 поражения и 3 ничьи.
Предположим, что победных игр 23: 23 · 3 = 69. Получаем, что 6 очков за ничью и 0 очков за поражение.
Предположим, что победных игр 22: 22 · 3 = 66. Получаем, что такой ситуации быть не может, так как максимальное число игр вничью — восемь, следовательно, 8 очков — 66 + 8 = 74, а в условии сказано, что команда набрала 75 очков.
Таким образом, наибольшее число ничейных матчей — 6.
. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
Поделитесь своими знаниями, ответьте на вопрос:
4200-а< 4000 подобрать несколько решений