Мистер фокс нарисовал параболу y=x2y=x2 и отметил на ней четыре точки kk, ll, mm и nn. оказалось, что точки выбраны им так, что прямые klkl и mnmn пересеклись на оси ординат. чему равна абсцисса точки nn, если абсциссы точек kk, ll и mm соответственно равны 7, 2 и 10?
Определяем координаты точек на параболе у = х²: К(7; 49), L(2; 4), M(10, 100). Уравнение прямой KL: Сократим знаменатели на -5 и приведём к общему знаменателю: 9х-63 = у-49, 9х-у-14 = 0 или у = 9х-14. Эта прямая пересекает ось ординат в точке -14. Коэффициент наклона прямой MN равен (100+14)/10 = 114/10 = 11,4. Получаем уравнение прямой MN: y = 11,4x-14. Теперь находим точку N на параболе как точку пересечения параболы у=х² и прямой у=11,4х-14. х² = 11,4х-14. Получаем квадратное уравнение х²-11,4х+14 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-11.4)^2-4*1*14=129.96-4*14=129.96-56=73.96;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√73.96-(-11.4))/(2*1)=(8.6-(-11.4))/2=(8.6+11.4)/2=20/2=10 (это точка М)(;x₂=(-√73.96-(-11.4))/(2*1)=(-8.6-(-11.4))/2=(-8.6+11.4)/2=2.8/2=1,4.
ответ: абсцисса точки N равна 1,4.
Titeeva-Vladimirovich283
19.03.2023
1)y1=х+9 и y2=-x+6 Первый просто построить графики и проверить пересечение. Второй найти точку пересечения. Для этого приравниваем функции, чтобы найти абсциссу точки пересечения: х+9=-х+6; 2х=-3; х=-1,5 Отсюда находим ординату: х+9=-х+6; -1,5+9=1,5+6 7,5=7,5 у1=у2=7,5 Координаты точки пересечения: (-1,5;7,5) Третий Любые две прямые, содержащиеся в одной плоскости, пересекаются, если только они не являются параллельными. Прямые являются параллельными, если k при х у них одинаковый. Рассмотрим k при х: y1=x+9; k при х =1 у2=-х+6; k при х = -1 1≠-1, ⇒ прямые не параллельны; прямые содержатся в одной плоскости⇒они пересекаются.
2) y = -0,5x + 13 и y = 8 + x То же самое. Выбирайте любой из трёх построить график, найти координаты точки пересечения либо доказать аналитически через сравнение коэффициентов при х. Давайте воспользуемся третьим например (сравнение коэффициентов): y1 = -0,5x1 + 13, k(x1) = -0,5 y2 = 8 + x2, k(x2) = 1 -0,5 ≠ 1 k(x1) ≠ k(x2) ⇒ прямые пересекаются.
К(7; 49), L(2; 4), M(10, 100).
Уравнение прямой KL:
Сократим знаменатели на -5 и приведём к общему знаменателю:
9х-63 = у-49,
9х-у-14 = 0 или у = 9х-14.
Эта прямая пересекает ось ординат в точке -14.
Коэффициент наклона прямой MN равен (100+14)/10 = 114/10 = 11,4.
Получаем уравнение прямой MN: y = 11,4x-14.
Теперь находим точку N на параболе как точку пересечения параболы у=х² и прямой у=11,4х-14.
х² = 11,4х-14.
Получаем квадратное уравнение х²-11,4х+14 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-11.4)^2-4*1*14=129.96-4*14=129.96-56=73.96;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√73.96-(-11.4))/(2*1)=(8.6-(-11.4))/2=(8.6+11.4)/2=20/2=10 (это точка М)(;x₂=(-√73.96-(-11.4))/(2*1)=(-8.6-(-11.4))/2=(-8.6+11.4)/2=2.8/2=1,4.
ответ: абсцисса точки N равна 1,4.