24·x²–34·x+25·y²=39
Пошаговое объяснение:
Пусть (x; y) координаты точки M, то есть M(x; y), d₁ – расстояние от точки M(x; y) до точки А(1; 0), а d₂ – расстояние от точки M(x; y) до прямой x=8.
Проекцией точки M(x; y) на ось Ох будет точкой В(x; 0) (см. рис). Тогда расстояние d₁ можем найти из прямоугольника треугольника AMB с катетами
АВ = (х–1) и ВM = у.
Применим теорему Пифагора: d₁²=(х–1)²+у².
Далее, расстояние от точки M(x; y) до прямой x=8 равно
d₂=|8–х|.
По условию задачи
5·d₁ = d₂ или 25·d₁² = d₂².
Получим уравнение:
25·((х–1)²+у²) = (8–х)².
Упростим уравнение:
25·x²–50·x+25+25·y²–x²+16·x=64
24·x²–34·x+25·y²=39.
Поделитесь своими знаниями, ответьте на вопрос:
Вкласс всего 17 парт.за 3 партами сидит по одному ученику, а остальными по двое..сколько учеников в классе?
3 ? 17
1)17-3=14-это остальные парты
2)14*2= 28- по двое учеников
3)3+28=31
ответ: 31 учеников в классе