Итак, для ограничения по целым степеням не более 27 по модулю, вычислимыми оказались результаты ~957 млн выводов и среди них 356 являются выводами числа 5479 и ни один вывод (а соответственно ни один вывод с операциями сложения, вычитания, конкатенации, умножения и деления, а также некоторые выводы с этими же операциями и некоторыми целыми степенями) не является выводом числа 10958. В чем его особенность?
Призраки и тени
Для задачи, аналогичной задаче Танежи в восходящем порядке, но с начальными векторами длины 8, такими как $(1, 2, ... , 8)$ и $(2, 3, ... , 9)$ количество вариантов меньше, а с иррациональными, комплексными и длинными целыми значениями элементов векторов (1) — (7) справляются оптимизированные алгоритмы Вольфрам Математики. Так, достоверно известно, что ни один вывод в $(1, 2, ... , 9)$, имеющий на 8-ой итерации оператор конкатенации, сложения или вычитания не может привести к значению 10958. Какие возможности для дальнейшего решения это даёт?
Число 10958 является полупростым. И если последняя итерация вывода не содержит сложение, вычитание и конкатенацию, то один из операндов на 8-ой итерации будет гарантировано включать 5479 в некоторой степени, за исключением двух случаев:
когда операнды кратны некоторым комплексно-сопряжённым
когда один из операндов содержит логарифм, основание или показатель которого кратны 5479
Решение
Пусть K — точка пересечения биссектрисы угла ADB с диагональю АС. Поскольку $ \angle$KDB = $ \angle$KCB = 35o, то точки K, B, C, D лежат на одной окружности. Поэтому
$\displaystyle \angle$BKC = $\displaystyle \angle$BDC = 40o, $\displaystyle \angle$ABK = $\displaystyle \angle$BKC - $\displaystyle \angle$BAC = 40o - 20o = 20o.
Тогда AK = BK и радиус окружности, описанной около треугольника AKD, равен радиусу первой окружности ( $ \angle$ADK = $ \angle$KDB = 35o). Поэтому
$\displaystyle \angle$CAD = $\displaystyle \angle$ACD = $\displaystyle {\frac{180^{\circ} - 110^{\circ}}{2}}$ = 35o.
Следовательно, угол между диагоналями равен
$\displaystyle \angle$BDC + $\displaystyle \angle$ACD = 40o + 35o = 75o.
ответ
75o.
Поделитесь своими знаниями, ответьте на вопрос:
(8-у)у=-20
8у-ув квадрате+20=0
У в квадрате -8у-20=0
D=64+80=144
У=10. Х=-2
У=-2. Х=10