Площа повної поверхні прямої призми:
Sп=2Soc+Sb.
В основі прямої призми лежить рівнобічна трапеція з основами AD=4 см і BC=10 см і бічною стороною AB=CD=5 см.
трапеція
Знайдемо висоту DL трапеції.
Із прямокутного трикутника DLC (∠DLC=90, бо DL⊥BC, CD=5 см – гіпотенуза і CL=3 см – катет) знайдемо катет DL.
DL2=CD2-CL2, звідси
Площа основи – трапеції ABCD:
Периметр основи:
Poc=AB+BC+CD=2•5+10+4=24 см.
Площа бічної поверхні:
Sб=Poc•h=24•10=240 см2.
Площа повної поверхні прямої призми:
Sп=2Soc+Sb=2•28+240=296 см2.
Відповідь: 296 см2
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение: 78 + 39x = 306 - 18x
39x + 18х = 306 - 78
57х = 228
х = 228/57
х = 4
ответ: 4