Р(Н1) = = 7/15, Р(Н2) = = 1/15, Р(Н3) = = 7/15 (при решении задачи полезно проверить выполнение необходимого условия ).
Если реализовалась гипотеза Н1, то во второй урне оказалось 10 белых и 2 черных шара. Обозначим через А событие, заключающееся в том, что из второй урны выкатился белый шар. Тогда Р(А/Н1) = = 5/33. Если реализовалась гипотеза Н2, то во второй урне оказалось 8 белых и 4 чёрных шара, и Р(А/Н2) = = 4/33. Легко показать, что Р(А/Н3) = = 3/22. Теперь можно воспользоваться формулой полной вероятности:
Р(А) = (5/33)(7/15) + (4/33) (1/15) + (3/22) (7/15) = 47/330
Будем разбивать на несколько случаев.
1) Если из первой урны взяли 4 чёрных шара. Вероятность достать четыре чёрных шара равна . Тогда во второй урне будет 3 белых и 9 черных шаров. Вероятность того, что среди трех отобранных шаров из второй урны окажутся все белые равна
. По теореме умножения
2) Если из первой урны взяли 1 белый шар и 3 чёрных. Вероятность такого события равна . Тогда во второй урне будет 4 белых и 8 черных шаров. Вероятность того, что среди отобранных шаров из второй урны все белые равна
. По теореме умножения:
3) Из первой урны взяли 2 белых шара и 2 чёрных. Вероятность такого события: . Во второй урне будет 5 белых и 7 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны все окажутся белыми равна
. По теореме умножения :
4) Из первой урны взяли 3 белых шара и 1 чёрный шар. Вероятность достать 3 белых шара и 1 чёрный шар равна . Во второй урне останется 6 белых и 6 чёрных шаров. Вероятность того, что среди отобранных шаров из второй урны окажутся все белыми равна
. По теореме умножения:
5) И, наконец, когда из первой урны урны взяли все четыре белых шаров. Вероятность такого события: . Во второй урне остается 7 белых и 5 черных шаров. Вероятность того, что среди отобранных 3 шаров из второй урны окажутся все белыми равна
. По теореме умножения:
Итого, по теореме сложения:
Поделитесь своими знаниями, ответьте на вопрос:
800 збільшили на 5% а потім зменьшили на 5%