dp199088206
?>

Найти нок 20 () нок(162, 243) нок(192, 256) нок(252, 189) нок(264, 300)

Математика

Ответы

Присакарь520
162 = 2 * 3 * 3 * 3 * 3
243 = 3 * 3 * 3 * 3 * 3
НОК (162 и 243) = 2 * 243 = 486 - наименьшее общее кратное

192 = 2 * 2 * 2 * 2 * 2 * 2 * 3
256 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
НОК (192 и 256) = 256 * 3 = 768 - наименьшее общее кратное

252 = 2 * 2 * 3 * 3 * 7
189 = 3 * 3 * 3 * 7
НОК (252 и 189) = 2 * 2 * 189 = 756 - наименьшее общее кратное

264 = 2 * 2 * 2 * 3 * 11
300 = 2 * 2 * 3 * 5 * 5
НОК (264 и 300) = 5 * 5 * 264 = 6600 - наименьшее общее кратное

Чтобы найти НОК нескольких чисел, нужно разложить эти числа на простые множители и найти произведение всех простых множителей, взятых с наибольшим показателем степени.
maxkuskov2485

Пошаговое объяснение:

Задача на комбинаторику.

В комбинаторике разделяют два типа задач: на сочетания и размещения.

Сочетание - это тип задач в комбинаторике, в которых порядок элементов не важен.

Размещение - это тип задач в комбинаторике, в которых порядок элементов важен.

У нас задача на размещение.

Формула для решения задач на размещения:

A_{n}^m = \frac{n!}{(n-m)!}

Где n - общее количество карт в колоде; m - количество вальтов; дам.

Подставляем значения в формулу:

A_{52}^2 = \frac{52!}{(52-2)!} = \frac{52!}{50!} = 51 * 52 = 2652

Напоминаю, что 52! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 52.

Следовательно, 50! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 50

52! и 50! можем сократить на 50!, в числителе останется 51 * 52, а в знаменателе - 1(мы числитель и знаменатель всегда можем домножить на единицу).

Получаем

Решаем пункт б:

A_{52}^3 = \frac{52!}{(52-3)!} = \frac{52!}{49!} = 50 * 51 * 52 = 132 600

Все то же самое, что и в пункте а.

Задача решена.

pavelriga5

Пошаговое объяснение:

Задача на комбинаторику.

В комбинаторике разделяют два типа задач: на сочетания и размещения.

Сочетание - это тип задач в комбинаторике, в которых порядок элементов не важен.

Размещение - это тип задач в комбинаторике, в которых порядок элементов важен.

У нас задача на размещение.

Формула для решения задач на размещения:

A_{n}^m = \frac{n!}{(n-m)!}

Где n - общее количество карт в колоде; m - количество вальтов; дам.

Подставляем значения в формулу:

A_{52}^2 = \frac{52!}{(52-2)!} = \frac{52!}{50!} = 51 * 52 = 2652

Напоминаю, что 52! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 52.

Следовательно, 50! это - 1 * 2 * 3 * 4 * 5 * 6 ... * 50

52! и 50! можем сократить на 50!, в числителе останется 51 * 52, а в знаменателе - 1(мы числитель и знаменатель всегда можем домножить на единицу).

Получаем

Решаем пункт б:

A_{52}^3 = \frac{52!}{(52-3)!} = \frac{52!}{49!} = 50 * 51 * 52 = 132 600

Все то же самое, что и в пункте а.

Задача решена.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти нок 20 () нок(162, 243) нок(192, 256) нок(252, 189) нок(264, 300)
Ваше имя (никнейм)*
Email*
Комментарий*