Образующая конуса наклонена к основанию под углом 45°. рассмотрим осевое сечение конуса. Наверное в условии сказано,что конус прямой. В осевом сечении равнобедренный треугольник. угол наклона боковых сторон( они же образующие конуса) 45°, значит угол при вершине равен 90°. 180°-45°-45°=90°. Треугольник прямоугольный. Боковые стороны- катеты, Площадь прямоугольного треугольника равна половине произведения катетов. S=(1/2)·4·4=8(cm²) Дополнение: Гипотенуза этого треугольника -диаметр конуса, если говорим об осевом сечении, то оно проходит всегда через диаметр.
papanovar
19.05.2021
Попробуем найти "шаблоны" расстановок цифр, по которым потом можно будет восстановить любое число, подходящее под определение "хорошего". Затем, исходя из них, посчитаем и количество.
Пусть X = от 1 до 9; и Y = от 1 до 9. При этом X не = Y в один и тот же момент. (то есть одни не могут быть равны одному и тому же числу)
Самый простой вариант - все числа повторяются ровно или более 2 раз.
Попытаемся внести новое число в шаблон. Y - не подходит, так как Y должен повторяться ровно или более двух раз.
YYXXX - подходит. При этом YYYXX бессмысленно, так как охватывает тот же диапазон. Далее двигаться также бесполезно, ибо X не может быть только один, а равносилен . А вот про то, что положения у Y среди X может быть разный, забывать не стоит. Так что стоит учесть все возможные его расстановки.
Тогда количество шаблонов можно будет вычислить как кол-во перестановок Y в X плюс шаблон .
Формулы комбинаторики не помню (2 к 5 тра-та-та) так что буду решать "на живую": с = (4+3+2+1) = 10 - кол-во перестановок 10+1 = 11 - с учетом шаблона .
Теперь о числах. По сути, их всего два. Так как меняются одни в шаблоне одновременно (меняется значение X, то меняются и все X в шаблоне). Так что можно рассматривать это как число XY, но не простое. Как я говорил выше, X не может = Y. И нулями числа быть не могут. Посчитаем количество подстановок цифр вместо X и Y.
L = 9*8 + 8 = 10*8 = 80 (для каждого из 9 X соответствует 8 значений Y (без совпадения), и остается ещё одно значение Y, рассматривая которое, мы приходим к выводу, что для него также есть 8 значений X)
И каждую из этих 80 комбинаций XY можно подставить в 11 шаблонов, что даст возможность воссоздать любое "хорошее" пятизначное число.
80*11 = 880 - ответ КАК-ТО так
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Разность чисел 600 и 240 раздели на частное чисел 160 и 4
160:4=40
360:40=9