В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
А) автомобиль ехал t часов со скоростью 80 км/ч. найдите среднюю скорость движения автомобиля. б) решите при t=2, р=3
S= V•t
V= S/t
V=80 км /Ч
t=t
Vср=?
Средняя скорость =весь путь делить на все время
S= V•t= 80•t
Vср= 80•t /t = 80 км/Ч
При
t=2;
S= V•t= 80•2=160 км
Vср= 80•t /t = 80•2/2= 80 км/Ч
При
t= 3.
S= V•t= 80•3= 240 км
Vср= 80•t /t = 80•3/3= 80 км/Ч
Автомобиль ехал с постоянной скоростью 80 км/Ч поэтому средняя скорость везде одинаковая.