nane2924329
?>

Знайти координати центра кола х^2-4х+у^2+10у+20=0

Математика

Ответы

olg14855767
(x²-4x+4)-4+(y²+10y+25)-25+20=0
(x-2)²+(y+5)²=9
(2;-5),R=3
Kubataeva Nikolaevich1389

ответ:

1) область определения функции. точки разрыва функции.  

2) четность или нечетность функции.  

y(-x)=x3+6·x2  

функция общего вида  

3) периодичность функции.  

4) точки пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

Li-111

ответ:

пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайти координати центра кола х^2-4х+у^2+10у+20=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

GALINAMTO
Maksimova1320
Konchenko1980
Milovidova
ivanpetrovichru1801
Vyacheslavovna1867
ekatef45
Станислав Валерий1696
kadrevproduction
КалюкМарасанов1026
rodsher7740
Daletskaya982
Nikolaevna1623
arturnanda803
inessa12006