ответ: (e-1)/3
Пошаговое объяснение:
Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.
.
Пусть
, тогда
.
![du = 3x^2dx \\ dx = \frac{du}{3x^2} = \frac{du}{3(\sqrt[3]{u} )^{2}} = \frac{du}{3u^{2/3}}](/tpl/images/1117/5039/82eee.png)
Делаем подстановку в наше изначальное выражение:
![\int{e^{x^{3}}x^2dx}=\int{e^{u}(\sqrt[3]{u})^{2}\frac{du}{3u^{2/3}} } = \int{ e^uu^{2/3}\frac{du}{3u^{2/3}} }](/tpl/images/1117/5039/640b8.png)
Здесь
сокращаются и мы имеем
. Выносим
за интеграл:
. Теперь мы имеем знакомый интеграл, который равняется
, тоже самое что
. Подставляем
и имеем
. Используем фундаментальную теорему исчисления:
![\int\limits^1_0 {e^{x^3} x^2} = \frac{1}{3} e^{x^3}]_0^1=\frac{1}{3} e^{1^3}-\frac{1}{3} e^{0^3}=\frac{1}{3} e^1-\frac{1}{3} e^0=\frac{1}{3} e-\frac{1}{3}=\frac{e-1}{3}](/tpl/images/1117/5039/3089c.png)
Пусть сторона нижнего основания а, верхнего -в.
По заданию в = (2/3)а.
Проведём диагональное сечение.
В сечении - равнобокая трапеция высотой 3 и углом при нижнем основании 60 градусов.
Верхнее основание равно в√2 = (2/3)а√2.
Нижнее основание равно равно а√2.
Так как угол 60 градусов, то разница а√2 - (2/3)а√2 = (1/3)а√2 равна боковой стороне.
Боковая сторона равна 3/sin 60° = 3/(√3/2) = 6/√3 = 2√3.
Приравняем (1/3)а√2 = 2√3, отсюда а = 6√(3/2).
Сторона в = (2/3)а = (2/3)*6√(2/3) = 4√(3/2).
Проекция бокового ребра на нижнее основание равна
3/tg60° = 3/√3 = √3.
Спроецируем этот отрезок на сторону нижнего основания.
√3*cos45° = √3*(1/√2) = √(3/2).
Отсюда находим наклонную высоту боковой грани.
hн = √((2√3)² - (√(3/2)²) = √(12 - (3/2)) = √(21/2).
Находим площадь боковой поверхности пирамиды.
Периметры:
- верхнего основания Р1 = 4*4√(3/2) = 16√(3/2),
- нижнего основания Р2 = 4*6√(3/2) = 24√(3/2).
Тогда Sбок = (1/2)(Р1 + Р2)*hн = 20√(3/2)*√(21/2) = 30√7.
S1 = (4√(3/2))² = 24,
S1 = (6√(3/2))² = 54.
ответ: S = S1 + S2 + Sбок = 24 + 54 + 30√7 = 78 + 30√7.
Поделитесь своими знаниями, ответьте на вопрос:
0.15= 1 пара
0,15*10=1,5 это 10 пар
номер 2
9/20=0,45 это 3 пары
0,15=1 пара
0,15*5=0,75 это 5 пар