denbelousov963
?>

Найдите сумму возможных целых значений третьей высоты треугольника, две другие высоты которого равны 2 и 3

Математика

Ответы

АлександрАлина
Вот так. ответ здесь сам делал
Найдите сумму возможных целых значений третьей высоты треугольника, две другие высоты которого равны
Найдите сумму возможных целых значений третьей высоты треугольника, две другие высоты которого равны
libirishka7910
Промежутки возрастания функции соответствуют положительным значениям производной, а промежутки убывания - отрицательным значениям. Найдем производную функции  у= 2х³ +4х²-1 и определим ее промежутки знакопостоянства.
у' = 6x²+8x = 2х*(3х+4). Находим корни трехчлена: х = 0, х = -4/3. Т.к. коэффициент 6 - положительный, то ветви параболы у = 6х² +8х направлены вверх и знаки будут  + - +.
-4/3 0
            +                              -                              +
       возрастает          убывает                   возрастает.

ответ: (-∞; -4/3] - возрастает, [-4/3;0] - убывает, [0;+∞) - возрастает.
annakorotaev3
Найдите наибольшее и наименьшее значение функции
а) f(x)= 3x^5-5x^3 на промежутке [-4;2]
б) f(X)= 3+4( числитель) в знаменателе X, на промежутке [-1;1]

Решение:
а) f(x)= 3x^5-5x^3 на промежутке [-4;2]

Находим производную функции f(x)= 3x^5-5x^3

f'(x)= 5*3x^(5-1)-3*5x^(3-1) = 15x^4-15x^2 = 15x^2(x^2-1)= 15x^2(x-1)(x+1)

Находим критические точки решив уравнение f'(x) = 0

   15x^2(x-1)(x+1) = 0
     х = 0;   х = 1; х = -1.

Находим значение функции в этих точках

f(-1)= 3(-1)^5-5(-1)^3 =-3 + 5= 2
f(0)= 3*0^5-5*0^3 = 0
f(1)= 3(1)^5-5(1)^3 = 3 - 5= -2

Находим значение функции на границах интервала
f(-4)= 3(-4)^5-5(-4)^3 =-3072 + 320 = -2752
f(2)= 3(2)^5-5(2)^3 = 96 - 40 = 56

Следовательно наибольшее значение функция f(x)= 3x^5-5x^3 на промежутке [-4;2]
имеет в точке х=2, f(2)= 56, а наименьшее в точке х=-4, f(-4)= -2752

ответ: fmin=-2756, fmax=56.

б) f(х)= (х+4)/х, на промежутке [-1;1]
 
f(х)= (х+4)/х =1+4/х

Находим производную функции f(x)= 1+4/х

f'(x)= (1+4/х)' = -4/x^2

Данная производная не имеет нулевых значение и терпит разрыв в точке х=0.
Функция  f(x)= 1+4/х в точке х=0 не существует и имеет разрыв второго рода. 

Находим поведение этой функции при приближении к точке 0 справа и слева.

\lim_{x \to -0}(1+4/x)=- \infty
\lim_{x \to +0}(1+4/x)= + \infty

Значение функции на границах интервала равны
f(-1) = 1 + 4/(-1) = -3
f(1) = 1+4\1 = 5
Следовательно не существует наибольшего и наименьшего значения функции на промежутке так как функция на данном интервале имеет точку разрыва второго рода.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите сумму возможных целых значений третьей высоты треугольника, две другие высоты которого равны 2 и 3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Alexander2035
Iiexota280274
Viktorovich
Valeria123864531
armynis8
lechic3
Giurievna1977
evolkova-73
orb-barmanager
daryagulyaeva
TatarkovTitova
korneevaa
козлов
fashbymsk
Vipnikavto58