Пошаговое объяснение:
1-Как вычислить высоту конуса, зная образующую и радиус основания?
Образующая конуса, высота и радиус основания образуют прямоугольный треугольник.
Поэтому если известна образующая (гипотенуза) и радиус (катет), то высоту можно выразить с теоремы Пифагора.
a² = c² - b², a = √(c² - b²).
a - высота, b - радиус, c - образующая.
2- Ребро куба равно 3 см. Найти объем и площадь полной поверхности куба.
Прямоугольный параллелепипед, все грани которого - квадраты, называется кубом.
Все ребра куба равны, а площадь поверхности куба равна сумме площадей шести его граней, т.е. площади квадрата со стороной H умноженной на шесть.
Площадь поверхности куба равна: S = 6 · H², где (H - высота ребра куба).
S = 6 · 3² = 6 * 9 = 54 см².
Объем куба равен кубу его ребра: V=H³, где H - высота ребра куба.
V= 3³ = 27 см³.
3- Длина, ширина и высота прямоугольного параллелепипеда соответственно равны: 2см, 3см, 1см. Найти объем и площадь полной поверхности параллелепипеда.
Параллелепипедом называется призма, основание которой параллелограмм. Параллелепипед имеет шесть граней, и все они — параллелограммы.
Параллелепипед, четыре боковые грани которого — прямоугольники, называется прямым.
Прямой параллелепипед у которого все шесть граней прямоугольники, называется прямоугольным.
Площадь поверхности прямоугольного параллелепипеда равна удвоенной сумме площадей трех граней этого параллелепипеда:
S = 2 · (Sa + Sb + Sc) = 2 · (ab + bc + ac), где
a – длина, b – ширина, c – высота параллелепипеда.
S = 2 * (2*3 + 3*1 + 2*1) = 2 * (6 + 3 + 2) = 2 * 11 = 22 см²
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту:
V= SH= a·b·c, где
H - высота параллелепипеда, где a – длина, b – ширина, c – высота параллелепипеда.
V= 2 * 3 * 1 = 6 см³
4- Длина каждого ребра правильной треугольной пирамиды равна 8 см. Высота пирамиды равна 6 см. Найти площадь полной поверхности и объем пирамиды.
Правильная треугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — правильный треугольник, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр основания из вершины.
У правильной треугольной пирамиды в основании лежит равносторонний треугольник со сторонами a, и три боковые грани — равносторонние треугольники с основанием а и бедрами а.
Площадь правильной треугольной пирамиды равна сумме площадей ее основания и трех боковых граней.
S = Sосн + 3•Sбок
Используя формулы площади равностороннего треугольника получим:
см²
Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S на высоту h.
, где
a — сторона правильного треугольника - основания правильной треугольной пирамиды.
h — высота правильной треугольной пирамиды
см3
Поделитесь своими знаниями, ответьте на вопрос:
1. дано множество чисел а: а = {2, 5; – 3; 0; 1, 8 ; — 0, 4; 13 5 ; 2} выделите из множества а подмножества: в – натуральных чисел, с – целых чисел и d – рациональных чисел. постройте диаграмму эйлера венна для множеств в, с и d и отметьте на ней элементы множества а. [4] 2. используя рисунок, сравните: а) b и с; b) b и e; c) f и 0; d) а и f . проект [4] 3. вычислите: + − + − 15 13 1 13 2, 2 4 [3] 4. даны точки а(–4, 6) и в(–2, 3 a) найдите координату точки с, противоположную координате точки а. b) изобразите точки а, в и с на координатном луче. с) найдите расстояние от точки в до точки с. [3] критерий оценивания прорешайте все что без фоток
§1)в круге В числа 2,в круге С - 3,0,а остольные в круге Д.
§2)b<c,b>e,f>0,a>f.
§3)
1)(-4 1\3)+(-1 13/15)=-31/5
2)2,2+(-31/5)=-4
§4) a) C=4,6
c) -2,3+4,6=2,3