За першу іграшку він заплатив половину своїх грошей і ще 1 грн, а значить вартість 1-ї іграшки = 1 + 0,5 *Х грн
Після покупки 1-ї іграшки у Ласунчика залишилось грошей = Х - (1+ 0,5 *Х) = Х - 1 - 0,5 * Х= 0,5 *Х - 1
За другу іграшку він заплатив половину грошей,що залишилися,і ще 2 грн, а значить вартість 2-ї іграшки = 1/2 * (0,5 *Х - 1) + 2 = 0,25 *Х - 0,5 +2 = 0,25 *Х + 1,5
Після покупки 2-ї покупки у Ласунчика залишилось грошей= Х - (1 + 0,5 *Х ) - (0,25 *Х + 1,5) = Х - 1 - 0,5 *Х - 0,25 * Х - 1,5= 0,25*Х-2,5
За третю іграшку він заплатив половину грошей,що залишились після купівлі двох іграшок,і ще 3 грн, а значить вартість 3-ї іграшки = 1/2 *(0,25*Х-2,5) + 3 = 0,125*Х -1,25 +3= 0,125*Х + 1,75
При покупці цих трьох іграшок Ласунчик витратив усі свої гроші, значить (1 + 0,5 *Х) + ( 0,25 *Х + 1,5) + (0,125*Х + 1,75) = Х 1 + 0,5 *Х + 0,25 *Х + 1,5 + 0,125*Х + 1,75 = Х 0,875*Х + 4,25=Х 4,25 = Х - 0,875*Х 4,25= 0,125*Х х=4,25/0,125 х=34 грн
Відповідь: у Ласунчика спочатку було 34 грн
oskina3
25.09.2021
Улус предложил решение задачи в той же статье, где он и опубликовал саму задачу. Он заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.Вопрос Булоса: "Означает ли «da» «да», только если ты бог правды, а бог B — бог случая?". Другой вариант вопроса: «Является ли нечётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая?»Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[4][5]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:Если я с тебя Q, ты ответишь «ja»?результат будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом:Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».Предположим, что «ja» обозначает «нет», а «da» обозначает «да»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».Используя этот факт, можно задавать вопросы:[4]Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог случая?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи.Спросим у этого же бога «Если я у тебя с Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.Оставшийся бог определяется методом исключения.
За першу іграшку він заплатив половину своїх грошей і ще 1 грн,
а значить вартість 1-ї іграшки = 1 + 0,5 *Х грн
Після покупки 1-ї іграшки у Ласунчика залишилось грошей = Х - (1+ 0,5 *Х) = Х - 1 - 0,5 * Х= 0,5 *Х - 1
За другу іграшку він заплатив половину грошей,що залишилися,і ще 2 грн,
а значить вартість 2-ї іграшки = 1/2 * (0,5 *Х - 1) + 2 = 0,25 *Х - 0,5 +2 = 0,25 *Х + 1,5
Після покупки 2-ї покупки у Ласунчика залишилось грошей= Х - (1 + 0,5 *Х ) - (0,25 *Х + 1,5) = Х - 1 - 0,5 *Х - 0,25 * Х - 1,5= 0,25*Х-2,5
За третю іграшку він заплатив половину грошей,що залишились після купівлі двох іграшок,і ще 3 грн,
а значить вартість 3-ї іграшки = 1/2 *(0,25*Х-2,5) + 3 = 0,125*Х -1,25 +3= 0,125*Х + 1,75
При покупці цих трьох іграшок Ласунчик витратив усі свої гроші, значить
(1 + 0,5 *Х) + ( 0,25 *Х + 1,5) + (0,125*Х + 1,75) = Х
1 + 0,5 *Х + 0,25 *Х + 1,5 + 0,125*Х + 1,75 = Х
0,875*Х + 4,25=Х
4,25 = Х - 0,875*Х
4,25= 0,125*Х
х=4,25/0,125
х=34 грн
Відповідь: у Ласунчика спочатку було 34 грн