![\tt\displaystyle\int{\left(\frac{2}{x^2} - \frac{3}{\sqrt{x}} + 3\sqrt[3]{x^2}}\right)\,dx](/tpl/images/1099/0230/73eb9.png)
![\tt\displaystyle=\int{\frac{2}{x^2}}\,dx - \int{\frac{3}{\sqrt{x}}\,dx + \int{3\sqrt[3]{x^2}}\,dx](/tpl/images/1099/0230/bd9a9.png)








Но так как степень n = 4 чётная, то отрицательного значения в аргументе логарифма быть не может, максимальное значение: ln|1 + 0| = ln|1| = 0, следовательно, модуль можно убрать.
Пример 3Метод: по частям.Так как в подинтегральном выражении модуль, нужно рассматривать два случая:

![\tt\displaystyle I_1= \int {x\cdot lnx} \, dx = \left[\begin{gathered}u=lnx\qquad du=\frac{1}{x}dx \\ dV=xdx\qquad V=\int {x}\, dx =\frac{x^2}{2} \end{array}\right]](/tpl/images/1099/0230/97524.png)




Так как это кусочно-заданная функция
, нам необходимо написать условия для отдельных формул. Так, для I₁ условие x ≥ 0, а для I₂ < 0.
Обозначим макет того, что должно у нас выйти
, где x - остальные числа
В числе 52314 5 цифр, мы точно знаем, что последняя - это "1", тогда у нас остаётся 4 цифры, которые мы можем поставить как нам угодно
Вне зависимости от того, с какого порядка мы начнём (c X1 или X2, или X3 - неважно), количество вариантов останется неизменным
Начнём с X1
на X1 - могут быть поставлены 5, 2, 3, 4 т.е 4 возможных случая
на Х2 уже могут поставлены уже 3 цифры, так как в предыдущем случае мы уже выбрали одну, и осталось 3 свободных цифры. И так далее
на X3 - 2 цифры
на X4 - 1 цифра
Если бы начали в другом ином порядке, смысл задачи и ответ на неё от этого не поменяется
Значит число возможных пятизначных чисел =
P=4! = 4*3*2*1 = 24 возможных комбинаций
ответ: 24Поделитесь своими знаниями, ответьте на вопрос:
Пошаговое объяснение: