"Найдите параллельные прямые и докажите,что они равны" - задание некорректно. Можно говорить о параллельных прямых и равных отрезках на них. Или о равных параллельных отрезках.
Решение задач опирается на равенство и сумму углов треугольников , теоремы о признаках параллельности двух прямых: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.(№33) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны (№30).
№ 30
Рассмотрим Δ ABE и Δ CDF. BE = DF -- по условию; АС = ЕF --- по условию. AE = АС + СЕ; CF = ЕF+ СЕ. ⇒ АЕ = СF, так как состоят из равных частей. Внешние углы ∠BEF = ∠DFM по рисунку ⇒ равны и смежные внутренние углы этих треугольников. ⇒ Δ ABE = Δ CDF ( по 2 сторонам и углу между ними)
∠BEF = ∠DFM по условию, а это соответственные углы при прямых BE, DF и секущей АМ . ⇒ BE ║DF по признаку параллельности прямых, и отрезки BE и DF равны как соответствующие стороны равных треугольников
Прямые АВ и СD параллельны по признаку параллельности прямых , так как углы, образованные этими прямыми и секущей АМ равны как углы равных треугольников и эти углы ( ∠BАЕ и ∠DСF) являются соответственными. Отрезки АВ и СD равны как стороны равных треугольников
ответ: BE ║DF, BE =DF; АВ║СD, АВ =СD
№ 33
Рассмотрим Δ NRQ; RQ= NQ - по условию.⇒ Δ NRQ - равнобедренный с основанием NR. А углы при основании равнобедренного тр-ка равны. Так как сумма углов треугольника равна 180°, то ∠RNQ = (180°-30°)/2 = 75°
Рассмотрим Δ MNQ. ∠MQN = 30° + 45° = 75° -- по рисунку
∠NMQ = 180° - ∠RNQ - ∠MQN = 180° - 75° - 75° = 30°
∠KNM = ∠NMQ = 30°, а эти углы - внутренние накрест лежащие при прямых KN, MQ и секущей NM. ⇒ KN ║ MQ по признаку параллельности прямых
MN = МQ так как треугольник MNQ равнобедренный, это вытекает из равенства углов ∠RNQ и ∠MQN
В данной задаче можно найти только отрезок MQ, параллельный прямой KN, равных параллельных отрезков нет. Есть равные стороны в равнобедренных треугольниках (MN =MQ и RQ = NQ) , но они не параллельны.
ответ: KN ║ MQ.
Рассмотрим произвольный ряд подряд идущих натуральных чисел: x₁, x₂,...x₁₀. Пусть сумма цифр первого числа кратна пяти, а следующее за ним число с суммой цифр кратной пяти будет число x₁ + 5 = x₆. То есть среди этой десятки чисел найдутся два с суммой цифр кратной пяти. Пусть теперь первое число не кратно пяти и равно 5x₁ + 1. Тогда первое число с суммой цифр кратной пяти будет число (5x₁ + 1) + 4= 5x₁ + 5= x₅, а второе x₁₀. Аналогично, если первое число ряда 5x₁ + 2, то первое число ряда с суммой цифр кратной пяти будет число (5x₁ + 2) + 3 = 5x₁ + 5= x₄, а второе x₉ и так далее. Таким образом, среди любых десяти подряд идущих натуральных чисел найдутся минимум два с суммой цифр кратной пяти. А это значит, что максимальное число подряд идущих чисел с суммой цифр не кратной пяти не превышает восьми. Требуемый пример легко находится: 56, 57, 58, 59, 60, 61, 62, 63.
ответ: 8.
Поделитесь своими знаниями, ответьте на вопрос:
Какие из сле¬ду¬ю¬щих утвер¬жде¬ний верны? 1) один из углов тре¬уголь¬ни¬ка все¬гда не пре¬вы¬ша¬ет 60 градусов. 2) диа¬го¬на¬ли тра¬пе¬ции пе¬ре¬се¬ка¬ют¬ся и де¬лят¬ся точ¬кой пе¬ре¬се¬че¬ния пополам. 3) все диа¬мет¬ры окруж¬но¬сти равны между собой.
из этих утверждений верны только 2 и 3