ответ: Степан, также Павел.
Пошаговое объяснение:
160 шт. - деталей изготовили Иван, Петр, Степен и Павел, по условию задачи.
81 шт. - деталей Иван, по условию задачи.
81 : 3 = 27 (шт.) - деталей Петр, так как Иван, изготовил в 3 раза больше, чем Петр, по условию задачи.
81 + 27 = 108 (шт.) - деталей изготовили Иван и Петр вместе.
160 - 108 = 52 (шт.) - деталей изготовили Степан и Павел вместе.
52 : 2 = 26 (шт.) - деталей Степан, также 26 шт. - Павел, так как они изготовили деталей поровну, по условию задачи.
Проверка:
81 + 27 + 26 + 26 = 160 (шт) - деталей изготовили все рабочие, по условию задачи.
Тогда:
26 шт. Степан = 26 шт. Павел < 27 шт. Петр < 81 шт. Иван
Следовательно:
Меньше всех деталей: Степан - 26 шт. также Павел - 26 шт.
ответ: Степан, также Павел.
ДАНО:
Исследование:
1. Область определения D(y). В знаменателе: 2*х+1 ≠0, х≠ - 0,5
Х∈(-∞;-0,5)∪(-0,5+∞) -
2, Непрерывность функции: разрыв при Х=-0,5.
Вертикальная асимптота: х = -0,5.
3. Проверка на чётность.
Y(-x) = (x²+3)/(-2*x+1) ≠ - Y(x) ≠ Y(x)
Функция ни чётная ни нечётная.
Вывод: нет ни осевой симметрии, как у функции y = x², ни центральной, как у функции y= x³
4. Пересечение с осью OХ. Y(x) = 0 - нет.
5. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X=(-oo;-0,5]
Положительная -Y(x)>0 X=[-0,5;+oo)
6. Пересечение с осью OY. Y(0) = 3.
7. Поиск экстремумов по первой производной.
Корни Y'(x)= 0. Х4= 2x/2x = 1 Х5= ? (≈-2.25)
7. Локальные экстремумы.
Минимум Ymin(X4= 1) =4/3. Максимум Ymin(X5=8,36) = ?
8. Интервалы возрастания и убывания.
Возрастает Х=(-оо; x5]U[1;+oo) , убывает - Х=[x5;-0.5)∪(0.5;1]
9. Вторая производная
Корней производной - нет. Точка перегиба в точке разрыва при Х=-0,5
10. Выпуклая “горка» Х∈(-∞; -0,5)
Вогнутая – «ложка» Х∈(-0,5; +∞).
11. График в приложении.
Поделитесь своими знаниями, ответьте на вопрос:
Лыжная эстафета продолжалась 5/6 ч а конькобежные соревнования в 4 раза дольше.сколько?
ответ:20/24(ч)
Пошаговое объяснение:5/6*4=20/24(ч)