Log(x-2) по осн-ю 1/3> -3log корень 3 степени из 1/5 по осн-ю 1/5 одз: x> 2-log(x-2) по осн-ю 3> 3 log 1/5 в степени 1/3 по осн-ю 5-log(x-2) по осн-ю 3> log 1/5 по осн-ю 5-log(x-2) по осн-ю 3> -log5 по осн-ю 5-log(x-2) по осн-ю 3> -1 (домножаем на -1 и меняем знак)log(x-2) по осн-ю 3< 1log(x-2) по осн-ю 3< log 3 по осн-ю 3 т.к 3> 1 ===> функция возрастает(знак сохраняется)убираем логарифмы: x-2< 3 x< 5с учетом одз получаем решение: (2; 5) ответ: (2; 5
Любовь
27.12.2021
Правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно: 1. Привести дроби к общему знаменателю; 2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Решение приложено...