anadtacia03108988
?>

Школьник купил 11 тетрадей и у него осталось 30 копеек, пото ему нужно было купить 15 тетрадок но не хватило 10 копеек. Сколь денег у школьника было изначально?

Математика

Ответы

Сергеевна-Иван1045
Радиусы вписанной в равнобедренный треугольник и описанной около равнобедренного треугольника окружности равны соответственно:

r = \dfrac{b}{2} \sqrt{ \dfrac{2a - b}{2a + b} } \\ \\ R = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } = \dfrac{a^2}{ \sqrt{(2a - b)(2a + b)} },
где a - боковая сторона, b - основание, r - радиус вписанной окружности, R- радиус описанной окружности.

Сделаем замену переменных, чтобы было легче преобразовывать.
Пусть t = 2a - b, \ \ z = 2a + b

2r = b \sqrt{\dfrac{t}{z} } \\ \\ R = \dfrac{a^2}{ \sqrt{tz} } \\ \\ \\ 3 = b \sqrt{\dfrac{t}{z} } \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{tz} }

Разделим первое уравнение на второе:

\dfrac{3}{ \dfrac{25}{8} } = \dfrac{b \sqrt{t} \sqrt{tz} }{ \sqrt{z}a^2 } \\ \\ \\ \dfrac{24}{25} = \dfrac{bt}{a^2}

Сделаем обратную замену:

\dfrac{24}{25} = \dfrac{b(2a - b)}{a^2} \\ \\ 24a^2 = 50ab - 25b^2 \\ \\ 24a^2 - 50ab + 25b^2 = 0 \ \ \ \ \ \ \ \ \ |: b^2 \\ \\ 24 \dfrac{a^2}{b^2} - 50 \dfrac{a}{b} + 25 = 0

Пусть x = \dfrac{a}{b}

24x^2 - 50x + 25 = 0 \\ \\ D = 2500 - 25 \cdot 4 \cdot 24 = 100 = 10^2 \\ \\ x_1 = \dfrac{50 + 10}{24 \cdot 2} = \dfrac{60}{12 \cdot 4} = \dfrac{5}{4} \\ \\ x_2 = \dfrac{50 - 10}{24 \cdot 2} = \dfrac{40}{48} = \dfrac{5}{6}

Значит, боковая сторона относится к основанию как 5:4, либо как 5:6.

Обратная замена:

\dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ a = 1,25b \\ \\ \dfrac{25}{8} = \dfrac{6,25b^2}{ \sqrt{4 \cdot 6,25b^2 - b^2 } } \\ \\ \dfrac{25}{8} = \dfrac{25b^2}{16 \sqrt{25b^2 - b^2} } \\ \\ \\ 1 = \dfrac{b^2}{2 \sqrt{24b^2} } \\ \\ 2 = \dfrac{b^2}{2 \sqrt{6}b } \\ \\ 4 = \dfrac{b}{ \sqrt{6} } \\ \\ b = 4 \sqrt{6} 

Получилось, что основание выражается иррациональным числом. Значит, данное значение не подходит.

Теперь решим второе уравнение:

\dfrac{a}{b} = \dfrac{5}{6} \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ \\ \dfrac{b}{a} = 1,2 \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - b^2} } \\ \\ b = 1,2a \\ \\ \dfrac{25}{8} = \dfrac{a^2}{ \sqrt{4a^2 - 1,44a^2} } \\ \\ \dfrac{25}{8} = \dfrac{a}{ \sqrt{2,56} } \\ \\ \dfrac{25}{8} = \dfrac{a}{1,6} \\ \\ a = 5 \\ \\ b = 1,2a = 6

Значит, боковая сторона равна 5 см, а основание - 6 см.
ответ: 5 и 6. 
arsen-ai-ti
Скорость - это производная от перемещения S(t):
v(t) = S'(t) = -1/2 * t² + 4*t + 3

Фактически это уравнение параболы, ветви которой направлены вниз. Координату вершины, а значит максимум, можно найти по известной формуле: xв = - b / 2a
Считаем: t = -4 / (2*(-1/2)) = 4
Т.е. при t = 4 максимальная скорость v(4) = -1/2 * 4² + 4*4 + 3 = 11

Есть другой исследовать v(t) на максимум. Для чего возьмём производную от v(t) и приравняем её нулю.
v'(t) = -t + 4 = 0, откуда t = 4.
В этой точке производная меняет знак с плюса на минус, следовательно, это точка максимума.

Итак, максимальная скорость движения этой точки наступит в момент времени, равный 4, и равна 11.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Школьник купил 11 тетрадей и у него осталось 30 копеек, пото ему нужно было купить 15 тетрадок но не хватило 10 копеек. Сколь денег у школьника было изначально?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rina394992
ЕВгений_денис643
meteor90
dpolkovnikov
a96849926288
Shamsulo
dmitryshigin
dilovarnazarov1986
Андреевнатест707
nikv568734
sn009
mnogoz
Vladimirovna
gorbelena1971
qadjiyevaaynura