ответ:Область определения функции - это все значения, которые может принимать переменная х.
В уравнении у = √(х^2 - 4х + 3) под знаком корня может быть только положительное число и 0, т.к. нельзя извлечь квадратный корень из отрицательного числа.
x^2 - 4x + 3 ≥ 0 – решим методом интервалов;
найдем нули функции:
x^2 – 4x + 3 = 0;
D = b^2 – 4ac;
D = (- 4)^2 – 4 * 1 * 3 = 16 – 12 = 4; √D = 2;
x = (- b ± √D)/(2a);
x1 = (4 + 2)/2 = 6/2 = 3;
x2 = (4 – 2)/2 = 2/2 = 1.
Отметим на числовой прямой точки 1 и 3, они поделят прямую на три интервала: 1) (- ∞; 1], 2) [1; 3], 3) [3; + ∞). Найдем значение выражения x^2 – 4x + 3 в каждом интервале. В ответ выпишем те интервалы, в которых оно положительно.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Среднее арифметическое чисел 45, 6, 127, 08, 90, 34 и 100, 1 равно
(45,1+127,06+90,34+100)/4 =
362,5/4 = 90,625
Пошаговое объяснение: