1. Площадь полной поверхности цилиндра находится по формуле:
Sц = 2 · π · r · (h + r),
где h – высота цилиндра, r – радиус основания цилиндра.
2. У цилиндра, описанного около шара, высота равна диаметру шара. Тогда формула для нахождения площади поверхности цилиндра приобретает следующий вид:
Sц = 2 · π · r · (2r + r) = 2 · π · r · 3r = 6· π · r2
Sц = 6· π · r2
3. При этом площадь поверхности шара равна:
Sш = 4 · π · r2
4. Сравнивая, формулы цилиндра и шара, получаем:
Sш / Sц = (6· π · r2) / (4 · π · r2)
Sш / Sц = 6 / 4
Sш = 6 / 4 · Sц
5. Осталось найти площадь поверхности шара:
Sш = 6 / 4 · Sц = 6 / 4 · 117 = 175,5 .
Поделитесь своими знаниями, ответьте на вопрос:
Графикфункции у=2х+в проходит через точкуА (3: 2) найти в
Нужно подставить значение точки в уравнение функции:
x=3; y=2
2=2·3+b
2=6+b
b=2−6
b=−4
ответ: b= −4.