12 кубиков с двумя различно окрашенными гранями.
У куба 12 ребер. 6 из них расположены между разноцветными гранями.
Кубики с двумя различно окрашенными гранями располагаются по 2 в центре каждого из шести таких ребер.
То есть всего 12 кубиков с одной синей гранью и одной красной.
Если вопрос в задаче стоит о кубика с только одной окрашенной гранью, - синей ИЛИ красной, то такие Кубики находятся по 4 в центре каждой грани.
Так как граней каждого цвета по 3, то всего таких кубиков:
12 только с одной красной гранью и 12 только с одной синей.
ответ:В
Поделитесь своими знаниями, ответьте на вопрос:
Задание 1. Даны вершины треугольника АВС: А(-2;4), В(3;1), С (10;7 Найти: а)уравнение стороны (АВ); б) уравнение высоты (СН); в) уравнение медианы (АМ); г)вычислить площадь треугольника.
12 кубиков с двумя различно окрашенными гранями.
У куба 12 ребер. 6 из них расположены между разноцветными гранями.
Кубики с двумя различно окрашенными гранями располагаются по 2 в центре каждого из шести таких ребер.
То есть всего 12 кубиков с одной синей гранью и одной красной.
Если вопрос в задаче стоит о кубика с только одной окрашенной гранью, - синей ИЛИ красной, то такие Кубики находятся по 4 в центре каждой грани.
Так как граней каждого цвета по 3, то всего таких кубиков:
12 только с одной красной гранью и 12 только с одной синей.
ответ:В