skryabinamaria
?>

найти площадь криволинейной трапеции 1 вариант

Математика

Ответы

arsen-ai-ti

Не видно нормально сфоткай сначала

grafffmc
Единицы измерения должны быть одинаковые, поэтому минуты переводим в часы
6мин/60=1/10=0,1часа
х-скорость  плановая
42/х-время по плану

х+10-скорость реальная
42/(х+10)-время реальное (знаменатель увеличился, т.е. время уменьшилось по сравнению с планом)
и это время меньше планового на 0,1ч. Т.е. если мы к реальному времени прибавим 0,1,то получим время по плану

42/х=42/(х+10) + 0,1
дальше умножаем право и лево уравнения на х(х+10)
  
42х(х+10)/х=42х(х+10)/(х+10) + 0,1х(х+10)
тут 42х(х+10)/х сокращаются иксы,остается 42(х+10)
тут 42х(х+10)/(х+10) сокращаются (х+10),остается 42х
Получается
42(х+10)=42х+ 0,1х(х+10) открываем скобки
42х+420=42х+0,1х²+х далее переносим всё в одну сторону и решаем квадратное уравнение
0,1х²+х-420=0
D  = 1² - 4·0.1·(-420) = 1 + 168 = 169
x1 = (-1 - √169)/(2·(0.1)) = (-1 - 13)/0.2 = -14/0.2 = -140/2=-70 -не подходит
x1 = (-1 + √169)/(2·(0.1)) = (-1 + 13)/0.2 =12/0.2 =120/2=60 км/ч-скорость плановая
60+10=70км/ч-скорость реальная (после переезда)
natalia-bokareva

а) на доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после семи таких операций на доске будет только одно число. может ли оно равняться 97?

б) на доске выписаны числа 1, 21, 2², 2³, 210. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после нескольких таких операций на доске будет только одно число. чему оно может быть равно?

решение

  a) получить 97 можно, например, так. последовательно вычитая из 16 числа 8, 4, 2, 1, получим 1. на доске остались числа 1, 32, 64, 128. далее: бикю 64 – 32 = 32,   32 – 1 = 31,   128 – 31 = 97.

  б) докажем, что если на доске выписаны числа 1, 2, 2n, то после n операций, описанных в условии, может получиться любое нечётное число от 1 до   2n – 1.   очевидно, числа, большие 2n, на доске не появляются. легко видеть также, что на доске всегда присутствует ровно одно нечётное число. значит, и последнее оставшееся на доске число нечётно. утверждение о том, что все указанные числа построить можно, докажем индукцией по n.

  база. имея числа 1 и 2, можно получить только число 1.

  шаг индукции. пусть на доске выписаны числа 1, 2, 2n+1. любое нечётное число, меньшее 2n, можно получить за   n + 1   операцию (на первом шаге сотрём 2n+1 и 2n и напишем 2n, далее по предположению индукции). нечётные числа от   2n + 1   до   2n+ 1 – 1   можно записать в виде   2n+1 – a,   где число a можно получить из набора 1, 2, 2n. на последнем шаге из   2n+1 вычитаем a.

ответ

а) может;   б) любому нечётному числу от 1 до   210 – 1.

замечания

: 2 + 3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

найти площадь криволинейной трапеции 1 вариант
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vvk2008
Михайлович1309
smokestylemos
Magnolia200872
seleznev1980
kalterbrun
Angelina1139
vvb1383
Tsibrova
turoverova5
lolydragon
alex-kuzora4411
Коновалова
adminaa
mihalewanadia20176987