Bsn1704
?>

( ) катер плыл 3 ч по озеру со скоростью 20 км/ч.В таблице 11 показана зависимость длины пути (s) от времени движения катера (t) 1) заполните таблицу 2) используйте таблицу, постройте график движения катера 3) запишите формулу Устонавливающую зависимость длинпутити (s) от времени движения (t) при постоянной скорости 20 км/ч.

Математика

Ответы

Dmitrii1763

ответ

время,t(час)                          1                 2                  3

Пройденный путь,s(км)       20               40                 60

Пошаговое объяснение:

alekseymedvedev1981

ответ: 1) +∞; 2) 7/3; 3) -5/4; 4) 1/2; 5) e^(-4/3).

Пошаговое объяснение:

1) Подстановка x=∞ приводит к неопределённости ∞/∞. Сокращая числитель и знаменатель дроби на x⁶, получаем lim(x⇒∞) [x⁴+1/x⁴+1/x⁶]/[5+1/x³+2/x⁵]=(∞+0+0)/(5+0+0)=∞/5=∞. ответ: ∞.

2) Подстановка x=1 приводит к неопределённости 0/0. Так как 5*x²-3*x-2=5*(x-1)*(x+2/5), а x³-1=(x-1)*(x²+x+1), то числитель и знаменатель дроби можно сократить на x-1. Тогда данный предел перепишется в виде lim(x⇒1) [5*x+2]/[x²+x+1]=7/3. ответ: 7/3.

3) Подстановка x=1 приводит к неопределённости 0/0. Умножив числитель и знаменатель дроби на √(9-5*x)+2, получим lim(x⇒1) [5-5*x]/[(x-1)*√(9-5*x)+2]=-5*lim(x⇒1) [x-1]/[(x-1)*√(9-5*x)+2]=-5*lim(x⇒1) 1/[√(9-5*x)+2]=-5/(√4+2)=-5/4. ответ: -5/4.

4) Подстановка x=0 приводит к неопределённости 0/0, то есть при x⇒0 числитель и знаменатель представляют собой бесконечно малые величины. Из курса анализа известно, что величина предела не изменится, если входящие в выражение бесконечно малые величины заменить эквивалентными. В данном случае бесконечно малую e^[sin(2*x)]-1 заменим эквивалентной бесконечно малой 2*x, а бесконечно малую arctg(4*x) - эквивалентной бесконечно малой 4*x. Тогда искомый предел запишется в виде lim(x⇒0) [2*x]/[4*x]=1/2. ответ: 1/2.  

5) Подстановка x=∞ приводит к неопределённости (∞/∞)^∞. Разделив числитель дроби на знаменатель, получим выражение для предела в виде lim(x⇒∞) [1-2/(3*x+1)]^(2*x+8). Положим 2/(3*x-1)=-t, тогда x=-2/(3*t)-1/3, 2*x+8=-4/(3*t)+22/3 и при x⇒∞ t⇒0. Тогда данный предел запишется в виде lim(t⇒0) [(1+t)^(22/3)/[(1+t)^(4/(3*t))]=1/lim(t⇒0)[(1+t)^(1/t)]^4/3=1/e^(4/3)=e^(-4/3). ответ: e^(-4/3).

stasletter
1) Дифференциал функции у = f(x) равен произведению её производной на приращение независимой переменной х:

dy = f '(x)dx или dy = y' dx

На практике достаточно найти производную и умножить её на dx. Дифференциал третьего порядка? Находим третью производную и умножаем на dx.

а) y = 3x^2-4x+5
y' = 6x -4 \\ \\ y'' = 6 \\ \\ y''' = 0

dy = 0*dx =0

б) y = ln3x
y' = (ln3x)' = \frac{3}{3x} = \frac{1}{x} \\ \\ y'' = - \frac{1}{x^2} \\ \\ y''' = \frac{2}{x^3}

dy = \frac{2}{x^3} dx

в) y = sin(1-2x)
y' = -2cos(1-2x) \\ \\ y'' = -4sin(1-2x) \\ \\ y''' = 8cos(1-2x)

dy = 8cos(1-2x)dx

2)
а) Просто подставляем х=3 и считаем:
\lim_{x \to \inft3} \frac{2x-6}{x^3+27} = \frac{2*3-6}{3^3+27} = \frac{0}{54}=0

б) Числитель и знаменатель делим на максимальную степень переменной икс, т.е. на x²:

\lim_{x \to \infty} \frac{3x^2-x-2}{x^2+x-1} = \lim_{x \to \infty} \frac{3- \frac{1}{x} - \frac{2}{x^2} }{1+ \frac{1}{x} - \frac{1}{x^2} } = \frac{3- \frac{1}{\infty}- \frac{2}{\infty^2} }{1+ \frac{1}{\infty}- \frac{1}{\infty^2} } = \frac{3-0-0}{1+0-0} = 3

в) Используем формулу синус двойного угла
\lim_{x \to \inft0} \frac{sin2x}{sinx} = \lim_{x \to \inft0} \frac{2sinxcosx}{sinx} = 2 \lim_{x \to \inft0} cosx =2*1 =2

г) используется сначала первый замечательный предел, а потом второй замечательный предел, вернее следствие из второго замечательного предела, а именно:
\lim_{x \to \inft0} \frac{e^x-1}{x} = 1

\lim_{x \to \inft0} \frac{e^x-1}{tgx} = \lim_{x \to \inft0} \frac{e^x-1}{ \frac{sinx}{cosx} } = \lim_{x \to \inft0} cosx \frac{e^x-1}{ sinx} = \\ \\ = \lim_{x \to \inft0} cosx * \lim_{n \to \inft0} \frac{e^x-1}{ sinx} = 1 * \lim_{x \to \inft0} \frac{ \frac{e^x-1}{x} }{ \frac{sinx}{x} } = \\ \\ = \frac{ \lim_{x \to \inft0}\frac{e^x-1}{x} }{ \lim_{x \to \inft0} \frac{sinx}{x} } =\frac{ \lim_{x \to \inft0}\frac{e^x-1}{x} }{ 1} = \lim_{x \to \inft0}\frac{e^x-1}{x} } = 1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

( ) катер плыл 3 ч по озеру со скоростью 20 км/ч.В таблице 11 показана зависимость длины пути (s) от времени движения катера (t) 1) заполните таблицу 2) используйте таблицу, постройте график движения катера 3) запишите формулу Устонавливающую зависимость длинпутити (s) от времени движения (t) при постоянной скорости 20 км/ч.
Ваше имя (никнейм)*
Email*
Комментарий*