notka19746
?>

От причала вниз по реке отплыл плот. Ниже по течению реки на расстоянии 17 км от первого причала находится второй. От него навстречу плоту через 2/3 ч после отплытия плота отправляется теплоход. Через какое время после своего отплытия плот встретится с теплоходом, если собственная скорость теплохода равна 25 км/ч, а скорость течения реки равна 3 км/ч?

Математика

Ответы

daarisgoy

1)3*2:3=2КМ-ПРОПЛЫЛ ПЛОТ ЗА 2/3ЧАСА.

2)17-2=15КМ-РАССТОЯНИЕ МЕЖДУ ПЛОТОМ И ТЕПЛОХОДОМ В МОМЕНТ ЕГО ОТПРАВЛЕНИЯ.

3)25-3=22КМ/Ч-СКОРОСТЬ ТЕПЛОХОДА ПРОТИВ ТЕЧЕНИЯ.

4)15:(3+22)=15/25=ЧЕРЕЗ 3/5ЧАСА-ВСТРЕТЯТСЯ ПОСЛЕ ОТПЛЫТИЯ ТЕПЛОХОДА.

5)3/5+2/3=(9+10):15=19/15=1 16/60=ЧЕРЕЗ 1Ч 16МИН(76МИН)-ВСТРЕТЯТСЯ ПОСЛЕ ОТПЛЫТИЯ ПЛОТА.

charlie79

1 час 16 мин

Пошаговое объяснение:

1)3*2:3=2КМ-ПРОПЛЫЛ ПЛОТ ЗА 2/3ЧАСА.

2)17-2=15КМ-РАССТОЯНИЕ МЕЖДУ ПЛОТОМ И ТЕПЛОХОДОМ В МОМЕНТ ЕГО ОТПРАВЛЕНИЯ.

3)25-3=22КМ/Ч-СКОРОСТЬ ТЕПЛОХОДА ПРОТИВ ТЕЧЕНИЯ.

4)15:(3+22)=15/25=ЧЕРЕЗ 3/5ЧАСА-ВСТРЕТЯТСЯ ПОСЛЕ ОТПЛЫТИЯ ТЕПЛОХОДА.

5)3/5+2/3=(9+10):15=19/15=1 16/60=ЧЕРЕЗ 1Ч 16МИН(76МИН)-ВСТРЕТЯТСЯ ПОСЛЕ ОТПЛЫТИЯ ПЛОТА.

maruska90

Российский математик, первый доказавший гипотезу француза Пуанкаре - головоломку, которая не поддавалась никому более 100 лет - любому трёхмерному предмету без отверстий путем различных действий, но без разрезаний и склеиваний, можно придать форму шара – трехмерной сферы. Подтвердив гипотезу предельно точными расчётами, превратил её в теорему.

АНДРЕЙ КОЛМОГОРОВ (1903 —1987)

Советский математик, один из основоположников современной теории вероятностей. Им получены фундаментальные результаты в топологии, геометрии, математической логике, в теориях: турбулентности, сложности алгоритмов, информации, меры, множеств, функций, тригонометрических рядов, дифференциальных уравнений и функциональном анализе.

СОФЬЯ КОВАЛЕВСКАЯ (1850 — 1891)

Первая в России женщина – профессор и первая в мире женщина-профессор математики. Открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки. Доказала существование аналитического решения задачи Коши для систем дифференциальных уравнений с частными производными, одна из теорем называется теоремой Коши-Ковалевской.

ГОТФРИД ЛЕЙБНИЦ (1646 — 1716)

Французский математик и физик. Один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. Посвятил ряд работ арифметическим рядам и биномиальным коэффициентам. Нашёл общий алгоритм для нахождения признаков делимости чисел.

ИСААК НЬЮТОН (1642 — 1727)

Английский математик, физик и астроном. Основатель современного математического анализа дифференциального и интегрального исчисления, основанные на бесконечно малых. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики.

БЛЕЗ ПАСКАЛЬ (1623 — 1662)

Французский математик и физик. Один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. Посвятил ряд работ арифметическим рядам и биномиальным коэффициентам. Нашёл общий алгоритм для нахождения признаков делимости чисел.

ПЬЕР ДЕ ФЕРМА (1601 — 1665)

Французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Наиболее известен формулировкой Великой теоремы Ферма. Занимался исследованиями в области теории чисел, геометрии, алгебры, теории вероятностей. В теории чисел дал систематического нахождения всех делителей произвольного числа.

gameover98
Обозначим число белых гладиолусов за Х, тогда красных, раз их в три раза больше будет 3Х, значит, желтых, то что осталось, т.е. (19-Х-3Х)=(19-4Х).
Запишем результат сравнения в виде двойного неравенства: X<(19-4X)<3X. (Из условия)
Рассмотрим неравенства.
1. Х<(19-4Х); ⇒(4Х+Х)<19; 5Х<19; Х<19/5;  Х<3ц4/5 (1)
2. (19-4Х)<3X; ⇒19<(3Х+4Х); 19<7X ⇒ X>19/7; X>2ц4/7 (2)
Запишем, исходя из (1) и (2) двойное неравенство: 3ц4/5>X>2ц4/7. Т.к. количество гладиолусов каждого цвета - это целое число (про сломанные в условии не было сказано!), то ясно,что только число Х=3 может соответствовать   количеству белых гладиолусов. Тогда число красных: 3Х=3·3=9 (гладиолусов), а желтых: (19-3-9)=7(гладиолусов)
ответ: 3 белых гладиолуса, 9 красных, 7 желтых.Сравнение: 3<7<9.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

От причала вниз по реке отплыл плот. Ниже по течению реки на расстоянии 17 км от первого причала находится второй. От него навстречу плоту через 2/3 ч после отплытия плота отправляется теплоход. Через какое время после своего отплытия плот встретится с теплоходом, если собственная скорость теплохода равна 25 км/ч, а скорость течения реки равна 3 км/ч?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

palmhold578
det-skazka55
НосовЖелиховская
oliayur4encko
kisuhakisa
egolopuzenko4253
Chistov9721209
Васильевна Владимирович
volodinnikolay19
vodexshop2
ikavto6
Valentinovna
ZharikovZalina
mokeevahelena
Richbro7