mnkrasnova
?>

У пакетi 3 зефiринки. Скiльки всього зефiриноку 7 таких пакетах? Склади i розв’яжи обернену задачу щоб щуканим у нiй було число 7.

Математика

Ответы

polusik120796

ответ:я не понимаю Украинский язык

Пошаговое объяснение:

betepah

ответ:Всего 21 зефир

Пошаговое объяснение: Нужно умножить 3 на 7. Мы умножаем количество зефира в 1 пакете на количество пакетов.

Buninilya

1. Пусть это число такое 10a + b, где b - последняя цифра числа, а - все остальные цифры, т.е. некое число.

10a + b - 2018 = a
9a = 2018 - b

Чтобы число делилось на 9, сумма его цифр должна делиться на 9. Значит, b=2. Тогда, 9a = 2018 - 2 = 2016; a = 224.

Итак, искомое число 2242.
Проверяем, 2242 - 224 = 2018

2. Составим 2 трёхзначных числа:
100a+10b+c и 100d+10e+f

Найдём разницу:
100a+10b+c-100d-10e-f = 100(a-b) + 10(b-e) + (c-f) = 693

Откуда,
a-d = 6
b-e = 9
c-f = 3

Если взять наибольшее трёхзначное число 999, то наименьшее возможное равно 999 - 693 = 306. Т.к. нуль не м.б. ни в каком числе, то ближайшее наименьшее возможное число равно 299, тогда наибольшее возможное равно 299 + 693 = 992

3. Пусть первая цифра равна а, а вторая равна b, тогда третья цифра равна (a+b), четвёртая - (a+2b), пятая - (2a+3b), шестая - (3a+5b). 

При этом, (3a + 5b) д.б. меньше 10, т.к. это цифра. При b>1 неравенство 3a+5b<10 не выполняется. При b=1 неравенство превращается такое 3a<5 и a=1. При b=0 неравенство будет такое 3а<10, и а=3. Т.к. число ищем максимальное, то берём а=3. Значит, максимальное искомое число равно: 303369

ответ: 303369

Подберём

borisova-Sergeevna

1. Пусть это число такое 10a + b, где b - последняя цифра числа, а - все остальные цифры, т.е. некое число.

10a + b - 2018 = a
9a = 2018 - b

Чтобы число делилось на 9, сумма его цифр должна делиться на 9. Значит, b=2. Тогда, 9a = 2018 - 2 = 2016; a = 224.

Итак, искомое число 2242.
Проверяем, 2242 - 224 = 2018

2. Составим 2 трёхзначных числа:
100a+10b+c и 100d+10e+f

Найдём разницу:
100a+10b+c-100d-10e-f = 100(a-b) + 10(b-e) + (c-f) = 693

Откуда,
a-d = 6
b-e = 9
c-f = 3

Если взять наибольшее трёхзначное число 999, то наименьшее возможное равно 999 - 693 = 306. Т.к. нуль не м.б. ни в каком числе, то ближайшее наименьшее возможное число равно 299, тогда наибольшее возможное равно 299 + 693 = 992

3. Пусть первая цифра равна а, а вторая равна b, тогда третья цифра равна (a+b), четвёртая - (a+2b), пятая - (2a+3b), шестая - (3a+5b). 

При этом, (3a + 5b) д.б. меньше 10, т.к. это цифра. При b>1 неравенство 3a+5b<10 не выполняется. При b=1 неравенство превращается такое 3a<5 и a=1. При b=0 неравенство будет такое 3а<10, и а=3. Т.к. число ищем максимальное, то берём а=3. Значит, максимальное искомое число равно: 303369

ответ: 303369

Подберём

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

У пакетi 3 зефiринки. Скiльки всього зефiриноку 7 таких пакетах? Склади i розв’яжи обернену задачу щоб щуканим у нiй було число 7.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Mariya987
kodim4
anton1969026203
marinakmaa86
tarasovs
elenaftdv7
Любовь
Daletskaya Sergei1121
julichca68
miumiumeaow
zadvornovakrmst
drevile57
ccc712835
Semenova1719
andrew55588201824