kostavaani
?>

В школах Чили очень длинные каникулы реши упражнение и узнаешь сколько недель они длятся 26-×?=9 . ×=?+? .×=?

Математика

Ответы

Irinalobanowa

тебе ответ расписать ть или просто ответ сказат26-×15=9

васильевич
Задание 1.
Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз).
На последнем месте могут стоять цифры 2 или 4 (так как числа четные).
Рассмотрим оба этих случая:
Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка).
Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6.
Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).

Аналогично в случае, когда на последнем месте цифра 4.
Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.

Суммарно 12 чисел.

ответ: 12 чисел: 1342, 1432, 3142, 3412, 4132, 4312, 1234, 1324, 2134, 2314, 3124, 3214.

Задание 2.
Последняя цифра - 1 или 3.
Рассмотрим оба варианта.

Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен.
Всего возможных вариантов:
A_3^2={3!\over(3-2)!}={1*2*3\over1}=6
Это числа 231, 321, 241, 421, 341, 431.

Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6.
Это числа 123, 213, 143, 413, 243, 423

Всего 12 возможных чисел.

ответ: 12 чисел: 231, 321, 241, 421, 341, 431, 123, 213, 143, 413, 243, 423
bereza81
Задание 1.
Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз).
На последнем месте могут стоять цифры 2 или 4 (так как числа четные).
Рассмотрим оба этих случая:
Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка).
Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6.
Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).

Аналогично в случае, когда на последнем месте цифра 4.
Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.

Суммарно 12 чисел.

ответ: 12 чисел: 1342, 1432, 3142, 3412, 4132, 4312, 1234, 1324, 2134, 2314, 3124, 3214.

Задание 2.
Последняя цифра - 1 или 3.
Рассмотрим оба варианта.

Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен.
Всего возможных вариантов:
A_3^2={3!\over(3-2)!}={1*2*3\over1}=6
Это числа 231, 321, 241, 421, 341, 431.

Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6.
Это числа 123, 213, 143, 413, 243, 423

Всего 12 возможных чисел.

ответ: 12 чисел: 231, 321, 241, 421, 341, 431, 123, 213, 143, 413, 243, 423

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В школах Чили очень длинные каникулы реши упражнение и узнаешь сколько недель они длятся 26-×?=9 . ×=?+? .×=?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

smnra219
polotovsky
st-op767840
stailwomen31
Li-111
pimenovamar
beaevgen711
Vyacheslav_Nikolaevna
miheev-oleg578
koochma
serebrennikova99
Виталий
jurys71242
Носов Тоноян
Шавкат кызы