решая систему из этих трех уравнений, получим, что
z=-2y (из второго)
x=y (из первого)
подставим все в последнее, получим, что 6у^2=1, то есть у=+-1/(корень из 6),
тогда х=+-1/(корень из 6), z=-+2/(корень из 6).
ответ: (1/(корень из 6),1/(корень из 6 /(корень из 6))
и (-1/(корень из /(корень из 6 ),2/(корень из
lavr74
19.01.2020
Решение: n = -21*a - 50*bm = 2*(a/5 - b/3) - 3*(a/4 - b/2) решаем методом гауса: дана система ур-ний n=−21a−50bn=−21a−50b m=2(a5−b3)−3a4−3b2m=2(a5−b3)−3a4−3b2 систему ур-ний к каноническому виду 21a+50b+n=021a+50b+n=0 7a20−5b6+m=07a20−5b6+m=0 запишем систему линейных ур-ний в матричном виде [07201121050−5600][012150072010−560] во 2 ом столбце [11][11] делаем так, чтобы все элементы, кроме 2 го элемента равнялись нулю. - для этого берём 2 ую строку [72010−560][72010−560] , и будем вычитать ее из других строк: из 1 ой строки вычитаем: [−720021−−56+500]=[−72002130560][−720021−−56+500]=[−72002130560] получаем [−720720012103056−5600][−7200213056072010−560] составляем элементарные ур-ния из решенной матрицы и видим, что эта система ур-ния не имеет решений −7x120+21x3+305x46=0−7x120+21x3+305x46=0 7x120+x2−5x46=07x120+x2−5x46=0 получаем ответ: данная система ур-ний не имеет решений
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
К вершине В прямоугольника ABCD проведен перпендикуляр ВК, доказать, что ∆ DKC-прямоугольный
вам решение: с вас шоколадка ))
а={3; -1; 1} и b={0; 2; 1}, пусть перпендикулярный вектор с={x,y,z}
тогда скалярное произведение ac=0, bc=0, то есть
3x- y+z =0
2y+z =0
x^2+y^2+z^2=1 (так как с - единичный вектор).
решая систему из этих трех уравнений, получим, что
z=-2y (из второго)
x=y (из первого)
подставим все в последнее, получим, что 6у^2=1, то есть у=+-1/(корень из 6),
тогда х=+-1/(корень из 6), z=-+2/(корень из 6).
ответ: (1/(корень из 6),1/(корень из 6 /(корень из 6))
и (-1/(корень из /(корень из 6 ),2/(корень из