ElenaEgorova1988576
?>

решить задачу На автозаправке клиент отдал кассиру 3500 рублей и по залить бензин до полного бака. Цена бензина 35 руб. 90 копеек за литр. Клиент получил 2387.1 рублей сдачи. Сколько литров бензина было залито в бак?

Математика

Ответы

smnra219

ответ:31

Пошаговое объяснение:

3500-2387.1=1112,9(заплатили за бензин)

1112,9÷35.9=31

Bmashutav16

Пошаговое объяснение:

В основном используется табличный интеграл от степенной функции, да ещё от синуса.

\int\limits {x^n} \, dx =  \frac{1}{n+1} x^{n+1} +C \\  \\  \int\limits {sinx} \, dx = -cosx + C

1а. f(x)=2-x

\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C

2б. f(x)=x^4 - sin x

\int\limits {(x^4 - sin x)} \, dx =  \frac{1}{4+1}x^{4+1} -(-cosx) +C =  \frac{1}{5}  x^5+ cosx +C

2в. f(x)= 2/ x^3

\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C

Дмитрий_Владимирович1162

Пошаговое объяснение:

В основном используется табличный интеграл от степенной функции, да ещё от синуса.

\int\limits {x^n} \, dx =  \frac{1}{n+1} x^{n+1} +C \\  \\  \int\limits {sinx} \, dx = -cosx + C

1а. f(x)=2-x

\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C

2б. f(x)=x^4 - sin x

\int\limits {(x^4 - sin x)} \, dx =  \frac{1}{4+1}x^{4+1} -(-cosx) +C =  \frac{1}{5}  x^5+ cosx +C

2в. f(x)= 2/ x^3

\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить задачу На автозаправке клиент отдал кассиру 3500 рублей и по залить бензин до полного бака. Цена бензина 35 руб. 90 копеек за литр. Клиент получил 2387.1 рублей сдачи. Сколько литров бензина было залито в бак?
Ваше имя (никнейм)*
Email*
Комментарий*