Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:
2 3 -1 2
1 -1 3 -4
3 5 1 4
x1 x2 x3
Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (-1). Умножим 2-ую строку на (2). Добавим 2-ую строку к 1-ой:
0 -5 7 -10
1 -1 3 -4
3 5 1 4
Умножим 2-ую строку на (-3). Добавим 3-ую строку к 2-ой:
0 -5 7 -10
0 8 -8 16
3 5 1 4
Умножим 1-ую строку на (8). Умножим 2-ую строку на (5). Добавим 2-ую строку к 1-ой:
0 0 16 0
0 8 -8 16
3 5 1 4
Определим ранг основной системы системы.
0 0 16
0 8 -8
3 5 1
Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к ступенчатому виду
Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля. Ранг этой системы равен rangA=3.
Определим ранг расширенной системы системы.
0 0 16 0
0 8 -8 16
3 5 1 4
Ранг этой системы равен rangB=3.
rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной.
Этот минор является базисным.
0 0 16 0
0 8 -8 16
3 5 1 4
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
16x3 = 0
8x2 - 8x3 = 16
3x1 + 5x2 + x3 = 4
Методом исключения неизвестных находим:
x3 = 0
x2 = 2
x1 = - 2
Система является определенной, т.к. имеет одно решение.
Решение системы линейных уравнений по методу Крамера
A = 2 3 -1 B = 2
1 -1 3 -4
3 5 1 4
|A|= -16
Dx1 = 2 3 -1
-4 -1 3 = 32 x1 = -2
4 5 1
Dx2 = 2 2 -1
1 -4 3 = -32 x2 = 2
3 4 1
Dx3 = 2 3 2
1 -1 -4 = 0 x3 = 0
3 5 4
Для нахождения определителей удобно применять схему Саррюса (или диагональные полоски).
Вот определитель основной матрицы.
2 3 -1 2 3
1 -1 3 1 -1
3 5 1 3 5
-2 27 -5 -3 -30 -3
-16
Поделитесь своими знаниями, ответьте на вопрос:
Побудувати пряму KN. Вибрати точку А поза прямою. за до косинця і лінійки побудувати пряму АВ, перпендикулярну до прямої KN, та пряму AC, паралельну прямій KN.
9
Пошаговое объяснение:
Один внутренний и и один внешний угол многоугольника, взятые при одной вершине, составляют развернутый угол. ⇒ Их сумма равна 180°.
Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы.
Если внешний угол принять равным х, то внутренний будет х+100°⇒
х+х+100°=180°
2х=80°
х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.